MÉTODOS ANALÍTICOS PARA CARACTERIZAÇÃO DE EVAPORITOS USANDO DRX, ICP-EAS E AAS

Geraldo Resende Boaventura; Éder de Souza Martins; Marcelo P. Pinelli; Ricardo L.V. Ribeiro; Viviani P. Alves; Maria Carmen Beriain

Universidade de BrasÍlia - Instituto de Geociências Campus Universitário-70910-900 Brasília-DF

V Congresso Brasileiro de Geoquímica e III Congresso de Geoquímica dos países de Língua Portuguesa, Niterói/RJ, 1995. Resumos expandidos - publicado em CDROM.

Introdução

Este trabalho apresenta um procedimento para caracterização mineralógica e geoquímica de amostras de evaporitos continentais (*sabkhas*) oriundas da Nigéria. Nesta região, os sais retirados destes depósitos são utilizados para consumo caseiro, principalmente como sal de cozinha (MAKANJUOLA & BEETLESTONE, 1975). Estes autores realizaram estudos preliminares destes depósitos, onde foi determinado que os sais estão principalmente na forma de trona, com variáveis proporções de halita e subsidiariamente de thenardita.

No presente estudo, a determinação geoquímica e mineralógica das amostras só foi possível através do emprego de várias técnicas analíticas, seguindo procedimentos modernos de caracterização de minérios (SWASH, 1984). A metodologia foi desenvolvida, a partir de técnicas já conhecidas, permitindo a caracterização de evaporitos de forma rápida e com precisão aceitável.

Metodologia

As amostras foram inicialmente estudadas por Difratometria de raios-X (DRX), para determinação qualitativa das fases mineralógicas. A partir destes dados foram definidos os diversos métodos analíticos a serem utilizados para quantificar os principais cations e anions presentes.

As amostras foram previamente pulverizadas em recipiente de Widia até >200 mesh, secas em estufa a 75°C por três horas e estocadas em dessecador. Os seguintes parâmetros foram determinados:

- 1) Resíduo insolúvel (RI) na solução aquosa (fração que contem quartzo e outros minerais insolúveis ou pouco solúveis como carbonato de cálcio);
 - 2) Perda por calcinação (PPC) a 1000 °C em forno mufla;
- 3) Carbono orgânico (Corg), carbono total (Ctot), carbono inorgânico (Cinorg) e de enxofre total (Stot) através de analisadores de carbono e enxofre da marca LECO modelo CR-12 e SC-132, respectivamente.

Os anions determinados foram:

- 1) Sulfato Solúvel: através de Espectrofotometria (HACH, DREL-2000), com Cloreto de Bário, em amostras dissolvidas em água.
 - 2) Carbonato e Bicarbonato: por volumetria com H₂SO₄.
 - 3) Cloreto: volumetria com nitrato de prata.
 - Os cations foram determinados nas amostras após fusão com LiBO₂ (metaborato de lítio).
- O Na e K foram determinados por emissão usando Espectrômetro de Absorção Atômica (AAS), marca Perkin Elmer, modelo 403.
- O Ca, Mg, Fe e Si através de Espectrofotometria de Emissão com Plasma Indutivamente Acoplado (ICP-AES) usando o equipamento SPECTROFLAME modelo FVM03. As linhas analíticas usadas para cada elemento foram: Ca (317,93 nm), Mg (279,88nm), Fe (259,95 nm) e Si (251,61 nm).

Resultados

Os resultados das análises químicas encontram-se na tabela 1 e 2 para cada uma das sete amostras analisadas.

A reconstituição mineralógica das amostras, tabelas 3 e 4, foi baseada principalmente na análise quantitativa de cations realizada por ICP-AES e AAS. Os resultados de K e Na serviram inicialmente para reconstituição dos haletos encontrados por DRX (silvita e halita) com ajuda do teor de cloreto solúvel determinado com nitrato de prata

A presença de minerais de sulfato em quantidade representativa, determinada em DRX, foi reconstituída a partir do sulfato solúvel na forma de sulfato de sódio. O restante de sódio foi considerado como carbonato.

A caracterização dos diversos carbonatos foi realizada pela razão encontrada entre os mesmos na DRX.

A análise de Stot foi proporcional ao sulfato solúvel, dado que confirmou as informações obtidas por espectrofotometria. As análises de CO₃²⁻ e HCO₃⁻ solúveis mostraram, no caso da amostra 1, ausência de carbonatos solúveis. Na amostra 4 a presença de bicarbonato ajudou na caracterização de trona junto com a DRX.

A determinação de Corg evidenciou o conteúdo de matéria orgânica carbonácea da amostra. Como era esperado a maior fração foi a de carbono inorgânico. A análise de DRX não registrou presença de carbono amorfo.

A amostra 3 apresentou um difratograma característico de minerais de baixa cristalinidade, o que dificultou a análise de minerais de sulfato na mesma.

O fechamento dos resultados das amostras 2, 4, 5, 6 e 7 comprova que os resultados das análises químicas foram coerentes.

Na amostra 1, o fechamento do resultado foi elevado. A justificativa para este fato pode estar relacionada com a alta concentração de Sílicio e Cálcio, causando interferências nas linhas analíticas e maior erro que o estimado para este tipo de análise. Neste caso, o teor de CaO foi calculado a partir de PPC e dos dados de DRX. O baixo resultado encontrado para RI em H₂O, não refletiu os resultados obitdos pela DRX e a análise química, impossibilitando a sua utilização.

Conclusão

Os resultados obtidos demonstram a eficiência da metodologia proposta para caracterização de evaporitos, especialmente pela possibildade de reconstituição dos minerais, fato confirmado pelas análises com DRX.

Outro aspecto importante se refere à simplicidade do método, pois não exigiu tratamentos onerosos ou demorados, possibilitando a obtenção de resultados de acordo com o que se exige para estas aplicações.

Agradecimentos

Os autores agradecem ao geólogo Luiz Eduardo Anchieta da Silva (MARINVEST Comércio Internacional Ltda.) pela cessão das amostras estudadas.

Referências bibliográficas

MAKANJUOLA, A.A. & BEETLESTONE, J.G. (1975), Geol. Metal. Soc., 10(1-2):31-41 SWASH, P.M. (1984) Trans. geol. Soc. S. Afr., 87:287-295.

Tabela 1 Análise de anions

Amostra	Ctot	Corg	Cinorg%	Stot	Cl ⁻	SO ₄ ²⁻	CO ₃ ²⁻	HCO ₃
	%	%		%	(mg/g)	(mg/g)	%	%
1	6.21	0.019	6.19	0.38	8	7	<ld< td=""><td>0.8</td></ld<>	0.8
2	11.46	1.305	10.15	0.07	14	4	2.88	<ld< td=""></ld<>
3	7.25	0.843	6.41	2.73	71	80	4.92	<ld< td=""></ld<>
4	8.17	1.819	6.35	1.72	36	51	9.48	1.04
5	9.65	0.997	8.65	0.06	126	4	9.24	<ld< td=""></ld<>
6	4.96	0.576	4.38	4.39	20	200	5.04	<ld< td=""></ld<>
7	11.62	ND	ND	0.035	40	1	6.24	<ld< td=""></ld<>

Tabela 2. Análise de cations, perda por calcinação e resíduo insolúvel

Amostra	Ca	Mg	Fe	Si	Na	K	PPC	RI
	%	%	%	%	%	%	%	%
1	17.6	2.80	3.08	27.10	3.4	1.25	23.56	49.72
2	0.76	0.84	0.22	5.30	30.5	2.32	42.83	22.85
3	3.34	1.17	0.63	9.10	21.3	2.28	ND	36.45
4	3.10	1.09	1.12	10.70	16.4	2.83	44.04	44.82
5	0.42	0.48	0.44	3.30	29.0	2.05	52.57	10.82
6	2.66	1.04	0.56	5.10	26.5	9.85	32.49	17.69
7	0.37	0.18	0.30	0.63	37.4	2.05	46.31	2.20

Tabela 3. Resultados dos óxidos metálicos, PPC e a soma total.

Amostra	CaO	MgO	Fe ₂ O ₃	SiO ₂	Na ₂ O	K ₂ O	PPC	TOTAL
	%	%	%	%	%	%	%	%
1	22	4.65	4.40	51	4.58	1.51	23.56	111.7
2	1.06	1.40	0.31	11.9	41	2.79	42.83	101.4
3	5.74	1.94	0.91	20.7	28.71	2.75	-	-
4	4.34	1.81	1.60	23.5	22.11	3.41	44	100.8
5	0.59	0.80	0.63	7.65	39	2.47	53	103.8
6	3.72	1.72	0.80	10.91	36	11.87	32.49	97.3
7	0.52	0.30	0.43	1.35	50	2.47	46	101.3

Tabela 4. Principais minerais encontrados com suas respectivas fórmulas químicas

Mineral	Fórmula Química	1	2	3	4	5	6	7
%	N. (GO.) (NGO.)			4.04	5 1 6			
trona	$Na_3(CO_3)(HCO_3)$	-	-	4.01	7.16	-	-	-
	$2H_2O$							
natrita	Na ₂ CO ₃	-	68.1	12.7	10.1	50.9	34.5	82.9
natron	Na ₂ CO ₃ .10H ₂ O	-	-	34.2	27.1	-	8.47	-
calcita	CaCO ₃	43.0	-	-	5.8	-	6.63	-
aragonita	CaCO ₃	-	-	2.8	1.94	_	-	-
halita	NaCl	-	-	11.7	1.7	17.7	3.3	3.52
silvita	KCl	-	4.43	-	5.4	3.91	-	3.91
mirabilita	Na ₂ SO ₄ .10H ₂ O	-	6.74	-	-	-	-	-
thenardita	Na ₂ SO ₄	-	-	-	7.6	-	12.0	-
portlandita	Ca(OH) ₂	-	1.41	4.13	-	0.77	-	0.68
quartzo	SiO ₂	57	11.9	20.7	23.5	7.65	-	-
aphthitalita	$(KNa)_3Na(SO_4)_2$	-	-	-	-	-	33.7	-
dolomita	MgCa(CO ₃) ₂	-	-	-	-	3.64	-	-
TOTAL		100	92.6	90.3	90.3	84.6	98.3	91.1