

Universidade de Brasília - UnB Instituto de Geociências

INTERPRETAÇÃO DE DADOS DE ELETROMAGNETOMETRIA AEROTRANSPORTADA (AEM) DO SISTEMA GEOTEM (DOMÍNIO DO TEMPO)

TESE DE DOUTORADO No. 080

MÔNICA G. VON HUELSEN

ORIENTADOR: Prof. Dr Roberto Alexandre V. de Moraes Co orientador: Prof. Dr. Augusto César B. Pires

> BRASÍLIA/DF 2007

INTERPRETAÇÃO DE DADOS DE ELETROMAGNETOMETRIA AEROTRANSPORTADA (AEM) DO SISTEMA GEOTEM (DOMÍNIO DO TEMPO)

Mônica G. Von Huelsen

Tese de doutorado

Orientador: Prof. Dr. Roberto Alexandre V. de Moraes Co orientador: Prof. Dr. Augusto César B. Pires

Banca Examinadora: Prof. Dr. Sérgio L. Fontes Prof. Dr. Jandyr de M. Travassos Dr. Marcelo de L. Bassay Blum Prof. Dr.José Elói G. Campos Prof. Dr. Roberto Alexandre V. de Moraes

Brasília

2007

À Taís, Cristiano, Antônia e Rubens

Agradecimentos

Registro aqui meus agradecimentos, pelos apoios técnico, científico e financeiro dispensados à minha pessoa, pelos colaboradores a seguir mencionados.

Ao professor Dr. Roberto Alexandre Vitória de Moraes, do Laboratório de Geofísica do Instituto de Geociências da Universidade de Brasília (IG/UnB), pela disponibilidade e dedicação com que me incentivou e orientou no desenvolvimento desta tese e de outros trabalhos científicos.

Ao professor Dr. Augusto César Bittencourt Pires, do Laboratório de Geofísica do Instituto de Geociências da Universidade de Brasília (IG/UnB), corientação, incentivo e sugestões ao meu trabalho.

Aos professores: Dr. José Elói Guimarães Campos, João Willy Correa Rosa, Carlos Tadeu Carvalho do Nascimento e Antônio Nuno de Castro Santa Rosa pelas sugestões e acompanhamento do trabalho.

Ao CNPq, que proporcionou os meios financeiros.

Ao Dr. Victor Labson e à Dra. MarillaDeszcz pelos dados e esclarecimentos de eventuais dúvidas.

Ao meu marido Cristiano Naibert Chimpliganond pela paciência, companheirismo e explicações e ao colega Engenheiro Sidinei Sebastião Tomás pelas sugestões.

Aos colegas Thiago Silva de Carvalho e Santino Araújo Filho pela colaboração.

A todos os amigos e funcionários do Instituto de Geociências que contribuíram de forma positiva com o trabalho.

Resumo

Desde 1950 estudos vem sendo realizados na aplicação da condutividade elétrica ao mapeamento geológico, com ênfase nos sistemas aeroeletromagnéticos. Estes sistemas usam o campo eletromagnético secundário obtido por contrastes em propriedades elétricas em subsuperfície em resposta a perturbações criadas por fontes eletromagnéticas naturais ou artificiais.

A diversificação na aplicação do sistema EM, que são geralmente portáteis, permite inúmeras combinações geométrica e eletrônica do par de bobinas transmissora e receptora. Sua portabilidade permite que sejam utilizados nas vários levantamentos geofísicos, como nos de superfície que usam transmissores fixos e móveis e o receptor móvel, de subsuperfície (*drill holes*), e naqueles em que são portados em plataformas móveis (marítimas ou aéreas).

Todo processo segue as leis de Maxwell e as respostas que são medidas dependem do modo em que se processa a medição (domínio da freqüência ou do tempo), dos equipamentos empregados e da geometria transmissor/receptor que formam com o alvo energizado.

Não existe uma disposição ideal de transmissores e receptores, dependendo assim do tipo de estudo que se deseja realizar na área.

Um dos sistemas disponíveis comercialmente já algum tempo, é o GEOTEM aerotransportado. Ele foi utilizado no vale San Pedro (sudeste do Arizona) em 1997. Os dados desta região nos foram disponibilizados pela USGS (*United State Geological Survey*) e foram utilizados para testar rotinas computacionais adaptadas nesta tese, para interpretar dado AEM, o que permitiu realizar uma análise quantitativa do modelo de condutividade da bacia sedimentar de San Pedro e sua relação com a hidrogeologia.

Propõe-se aqui apresentar um procedimento de interpretação que pode ser utilizado para o dado AEM. Neste foram aplicadas duas técnicas: 1) a que obtém o comportamento da condutividade pela profundidade ao longo das linhas do levantamento; 2) a inversão de dados eletromagnetométricos para um sistema não linear.

Esta última metodologia desenvolvida foi inicialmente aplicada a dados sintéticos, cuja inversão é do tipo controlada. Posteriormente a aplicação deste procedimento deu-se aos dados reais mencionados.

As duas técnicas mostraram-se eficientes, sendo que a primeira exibiu um processo de inversão rápido e qualitativo e a segunda, menos rápido e quantitativo.

Finalmente a proposta final foi em obter volumes com os resultados das medições eletromagnéticas no domínio do tempo (TDEM) para que se tenha uma visão 3D do modelo da condutividade da região em estudo.

Para tanto serão apresentados os conceitos fundamentais do método eletromagnético aplicados ao sistema e escolhido (GeoTEMTM-*Time Domain Airborne EM System*) e os procedimentos de interpretação desenvolvidos.

ABSTRACT

Since 1950 research has been carried out on the application of the electric conductivity for geological mapping, with the most effort put on airborne electromagnetic systems. These systems use the secondary electromagnetic field developed by contrasts in electric properties in the subsurface as response to disturbances created by natural or artificial electromagnetic sources.

The many techniques developed in the use of those EM systems, which are commonly portable, imply in several combinations of how to combine physically and electromagnetically pairs of transmitter and receiver loops of different sizes and geometries. This resulted on the several modalities of use common to EM geophysical surveys, as those carried out on land using fixed and mobile transmitters and mobile receiver on surface, drill holes, airborne and in marine environment.

All physical process follows the Maxwell laws of electromagnetism and the signals measured depend on the way that the measurement is accomplished (frequency or time domain), the type of the equipment used and on the geometry that the transmitter/receiver pair form with the energized target at the Earth.

The ideal disposition of transmitters and receivers seems not to exist. It will depend on the kind of study is to be accomplished the area.

GEOTEM is an airborne system that is available commercially for some time. It was used in San Pedro basin (southeast of Arizona) in 1997. The data of this survey was made available by the United State Geological Survey and it was used for testing the computer routines and programs developed. This software was used in this thesis to perform a quantitative analysis with the conductivity model for the San Pedro Sedimentary Basin and its relation to the hydrogeological targets envisaged with these studies.

This research intends to present a procedure that can be used for an Airborne EM (AEM) interpretation. The methodology developed is first tested on synthetic models as to invert data generated by them in a controlled inversion scheme. Later on this procedure is applied to the real data mentioned.

The intention is to obtain an interpretation map with the results of the electromagnetic measurements in the time domain (TDEM) and a 3-D visualization of the conductivity model obtained for the airborne electromagnetic survey in study.

The approach followed is that bared on fundamental concepts of the electromagnetic method applied to the system chosen (GeoTEMTM Time Domain Airborne EM System) and the interpretation procedures developed.

SUMÁRIO

Lista de Figuras	xi
Lista de Tabelas	xvii
Agradecimentos	i
Resumo	ii
Abstract	iv
Sumário	vi

INTRODUÇÃO.....1

CAPÍTULO I

INSTRUMENTAÇÃO DO MÉTODO AEROELETROMAGNÉTICO

1.	Considerações iniciais	5
1.1	Breve histórico e aplicação do método AEM	5
1.2	Aplicações do sistema AEM	.12
1.3	Classificação dos sistemas aeroeletromagnéticos (AEM)	13
1.4	Descrição de sistemas ATDEM (Sistema INPUT e seus Sucessores)	18
1.5	Tempo X freqüência	.22
1.6	Considerações finais	.23

CAPÍTULO II

PRINCÍPIOS FÍSICOS DOS MÉTODOS ATDEM

2.	Considerações iniciais	25
2.1	Equações de Maxwell no domínio do tempo	25
2.2	Equação da onda	27
2.3	Soluções da equação da onda	30
2.4	Princípios físicos dos equipamentos TEM	33

CAPÍTULO III

INVERSÃO DE DADOS AEROELETROMAGNÉTICOS

3.	Considerações iniciais	.38
3.1	Breve Histórico da inversão geofísica	.38
3.2	Problemas e soluções inerentes à inversão	.40
	3.2.10 problema inverso mal condicionado	.41
3.3	O problema da existência	.42
	3.3.1 O MMQ	.43
3.4	Unicidade e Estabilidade	.45

CAPÍTULO IV

PROBLEMA INVERSO NÃO LINEAR E ALGUMAS ESTRATÉGIAS DE SOLUÇÃO

4.	Considerações iniciais	.48
4.1	Formulação	.48
4.2	Métodos numéricos básicos	50
4.3	Os métodos de Newton e Gauss-Newton	51
4.4	Método da região verdadeira	.53
4.5	Método quase Newton	.55
4.6	Método de Marquardt	.55
	4.6.1Tamanho do passo e sua aplicação no software utilizado	.57
	4.6.2Matriz Escada (D)	.58

CAPÍTULO V

INTERPRETAÇÃO DE DADOS AEROELETROMAGNÉTICOS COM BASE NA <u>MODELAGEM DIRETA</u>

5.	Considerações	iniciais	. 59)
----	---------------	----------	------	---

5.1 Modelagem direta 1D	59
5.2 Transformada de Hankel e o filtro digital de Anderson	61
5.2.1Determinação do filtro para bobinas de eixo vertical	63
5.3 Modelador direto utilizado na inversão	65

CAPÍTULO VI

ALGORITMO COMPUTACIONAL

6.	Considerações iniciais	.67
6.1	Procedimento de interpretação	.67
6.2	Algoritmo computacional	.68
	6.2.1 Software aplicado para modelagem inversa	. 68
	6.2.2 Cálculos realizados pelo programa	. 69
	6.2.2.1 Modelador inverso	. 69

CAPÍTULO VII

<u>TESTES DE VALIDAÇÃO</u>

7.	Considerações iniciais	71
7.1	Ferramentas para análise da solução	71
7.2	Modelagem inversa sintética	72
	7.2.1 Modelos de referência	73
	7.2.2 Descrição do modelo perturbado e sensibilidade da inversão	74
	7.2.2.1 Inversão geométrica	75
	7.2.2.2 Inversão geométrica na presença de ruído	76
	7.2.2.3 Análise do RMS na inversão geométrica	77
	7.2.2.4 Inversão geométrica: comportamento do passo e MVC	89
	7.2.2.5 Inversão paramétrica	91
	7.2.2.6 Inversão paramétrica na presença de ruído	92
	7.2.2.7 Análise do RMS na inversão paramétrica	92
	7.2.2.8 Inversão paramétrica: comportamento do passo e MVC	104

7.3 C	onsiderações	finais	.107
-------	--------------	--------	------

CAPÍTULO VIII

<u>TÉCNICA DE IMAGEAMENTO</u>

8.	Considerações iniciais	108
8.1	Resistivadade aparente (CDIs)	108
8.2	Profundidade	110
8.3	Software aplicado para modelagem –CDI	115

CAPÍTULO IX

APLICAÇÃO AOS DADOS REAIS

9.	Considerações iniciais	118
9.1	Localização	118
9.2	Geologia da área	119
	9.2.1Estratigrafia da Bacia São Pedro	121
9.3	Trabalhos desenvolvidos na área	123
9.4	Levantamento de campo AEM empregado	127
	9.4.1 Equipamento eletromagnético utilizado (GEOTEM)	127
9.5	Pré análise dos dados obtidos	131
9.6	CDIs obtidas	135
	9.6.1 CDIs destacadas	136
9.7	Inversão aplicada aos dados reais	155
9.8	Resultados obtidos através da inversão	159
9.9	Resposta AEM, CDI e inversão -NLSTCI : modelagem	160
CO	NCLUSÃO	168
RE	FERÊNCIAS BIBLIOGRÁFICAS	171

82
8

LISTA DE FIGURAS

FIGURAPÁGINA
1.1 1º sistema AEM. Canadá – Julho de 1948 (Extraído de Collet, 1986)6
1.2a Bobina coplanar horizontal (eixos verticais)7
1.2b Bobina coaxial vertical (eixo paralelo à linha de vôo). S: Campo secundário; P:
campo primário; R: receptor; T: transmissor; k: constante (modificado de Geoterrex-
dighem, 1999)7
1.3 Sistema Barringer de 1967 (Fraser, 1967 apud Fountain, 1998)
1.4 Sensores nos eixos y, x e z
1.5 Sistema AEM com charuto
1.6 Sistema Heli-INPUT
1.7 : GEOTEM –Sistema instalado na CASA 212 10
1.8 SPECTREM, turbina DC311
1.9 Sistema UNICOIL, 198112
1.10Princípios básicos do sistema AEM14
1.11 Sistema ativo com transmissor e receptor móveis localizados no charuto a uma
altura de 30m
1.12 Geometria dos sensores transmissor (T) e receptor (R) para cinco tipos básicos de
sistemas aeroeletromagnéticos. a) transmissor fixo; b) dois aviões um com receptor
e outro com transmissor; c)transmissor no avião e receptor no charuto (towed bird)
d) transmissor e receptor nas extremidades das asas do avião (wing tip); e
transmissor e receptor no charuto carregado por helicóptero16
1.13 Funcionamento do INPUT a) Campo magnético e corrente transmissora; b) tensões
desenvolvidas pela corrente (sinal primário); c) campos primário e secundário
induzidos no receptor (transmissão desligada). I: corrente; Hp: campo magnético
induzido; Ep e Es: campo elétrico primário e secundário; T: tempo19
1.14 GEOTEM (extraído de geoterrex-digihem, 1999)20
1.15 MEGATEM
1.16 AEROTEM (extraído de AEROQUEST INTERNATIONAL, 2000)
1.17 DIGIHEM V
2.1 Campo magnético ou elétrico pelo tempo; para z=100m (modificado de Nabighiar
& Macnae, 1987a)
2.2 Campo magnético ou elétrico (para t = $0,03$ ms) pela distância, para um tempo fixo
t=0,03ms (modificado de Nabighian & Macnae, 1987a)
2.3 Formas de onda do transmissor e do receptor (modificado de Nabighian & Machae
1987b)
2.4a esboço do fluxo de corrente num condutor esferico apos a corrente ser desligada do
utansinissor. A amplitude decai com o tempo
2.40 Cheuno com fransmissor, Receptor e Condutor, M _{ij} sao as indutancias mutuas; I
r_1 contentes no transmissor e condutor. n_p e n_s campo primario e secundario gerado no recentor devido no transmissor o condutor, recenctivamento: r_1 (t) a r_2 (t)
gerado no receptor devido ao transmissor e condutor, respectivamente; $e_p(t)$ e $e_s(t)$
de Nabighian & Magnae, 1087b)
ue ivalignian & ivialiae, 170/0/

2.5 : (a) voltagem de saída do receptor pelo tempo (t); (b) campo magnético no receptor
TEM pelo tempo, para bons e fracos condutores (modificado de Nabigian &
Macnae, 1987b)
3.1 Y- espaço das observações; P- espaço das soluções. Y=F(P)43
3.2 Solução inversa Y- espaço das observações; P- espaço das soluções44
3.3 Região de ambigüidade e a informação a priori resultando numa nova função e
estabilizando o problema geofísico46
3.4 a)desigualdade; b) Igualdade absoluta; c) Igualdade relativa (modificado de Silva, 2002)47
4.1 : Aproximação pelo método de Newton. Em azul aproximação de segunda ordem de
pi de uma função arbitrária convexa com mínimo M. O mínimo M' de uma
aproximação de segunda ordem é atingido após uma iteração do método de Newton
(modificado de Silva et al., 2001)
4.2 Parametro de Marquadi – establitzando o passo (modificado de Silva, 2002)
5.1 Espectro de lase do litiro (modificado de Koeloed, et al., 1972)
5.2 Resposta sinc do intro (modificado de Koeloed, et al., 1972)
7.1 (a) Resposta da moderagem difeta, oblida para uni (b)semi-espaço e duas camadas $\frac{72}{100}$
como mostra a tabela 8.1.(+) 16 tempos considerados (off time)
7.2 (a) (
-) reposta do modelo mverso; () () Modelo 1 de condutividade crescente; () Modelo inverso; (a) () respecte do modeledor direto para o Modelo 2
(approximate de la constante) () resposta do modela inverso; d) () Modela 2 da
(condutividade decrescente), () reposta do modelo miverso, d) () modelo 2 de
7 2 (a) () respecte do modelador direto para o Modelo 2(condutividado mista) ()
reposta do modelo inverso: h) () Modelo 3 de condutividade crescente: ()
Modelo inverso: (c) () resposta do modelador direto para o Modelo A
(condutividade mista) () reposta do modelo inverso: d) ($$) Modelo 4 de
condutividade mista; () Modelo inverso.
74 (a) () resposts do modelador direto para o Modelo 1 (condutividade crescente) (
resposta contaminada com ruído de 1% do modelador direto para o Modelo 1:
(+) reposta do modelo inverso: b) () Modelo 1 de condutividade crescente: ()
Modelo inverso: (c) (
(condutividade decrescente) () resposta contaminada com ruído de 1%, do
modelador direto para o Modelo 2 (+) reposta do modelo inverso: d) (
2 de condutividade decrescente: () Modelo inverso
7.5 (a) () resposta do modelador direto para o Modelo 3 (condutividade mista) .()
resposta, contaminada com ruído de 1%, do modelador direto para o Modelo 1; (+)
reposta do modelo inverso; b) () Modelo 2 de condutividade mista; () Modelo
inverso; (c) () resposta do modelador direto para o Modelo 3 (condutividade
mista), () resposta, contaminada com ruído de1%, do modelador direto para o
Modelo 4, (+) reposta do modelo inverso; d) () Modelo 4 de condutividade
mista; () Modelo inverso
7.6 (a) () resposta do modelador direto para o Modelo 1 (condutividade crescente)
,() resposta, contaminada com ruído de 2%, do modelador direto para o Modelo
1; (+) reposta do modelo inverso; b) () Modelo 1 de condutividade crescente; (
-) Modelo inverso; (c) () resposta do modelador direto para o Modelo 2
(condutividade decrescente), () resposta, contaminada com ruído de 2%, do
modelador direto para o Modelo 2 (+) reposta do modelo inverso; d) () Modelo
2 de condutividade decrescente; () Modelo inverso

- 7.12 Gráficos mostrando a variação do passo com a mudança de dois parâmetros (p);
 p1: parâmetro referente a primeira camada, p2: parâmetro referente a segunda camada; (●) cada passo; (→) indica a convergência para o mínimo da função; a) modelo 1, condutividade crescente, mínimo da função=2.10⁻⁷; b) modelo 2, condutividade decrescente, mínimo da função=3.10⁻²⁰; c) modelo 3, misto, mínimo da função=2,0.10⁻⁶; d) modelo 4, misto, mínimo da função=3,6.10⁻²¹..........................90

- 7.15 (a) (—) resposta do modelador direto para o Modelo 1 (condutividade crescente), (----) resposta, contaminada com ruído de 1%, do modelador direto para o Modelo 1; (+) reposta do modelo inverso; b) (—) Modelo 1 de condutividade crescente; (---) Modelo inverso; (c) (—) resposta do modelador direto para o Modelo 2

(condutividade decrescente), () resposta, contaminada com ruído de 1%, do
modelador direto para o Modelo 2 (+) reposta do modelo inverso; d) () Modelo
2 de condutividade decrescente; () Modelo inverso
7.16 (a) (—) resposta do modelador direto para o Modelo 3 (condutividade mista),(
) resposta, contaminada com ruído de 1%, do modelador direto para o Modelo 1;
(+) reposta do modelo inverso; b) () Modelo 2 de condutividade mista; ()
Modelo inverso; (c) () resposta do modelador direto para o Modelo 3
(condutividade mista), () resposta, contaminada com ruído de1%, do modelador
direto para o Modelo 4, (+) reposta do modelo inverso; d) () Modelo 4 de
condutividade mista; () Modelo inverso
7.17 (a) () resposta do modelador direto para o Modelo 1 (condutividade crescente)
,() resposta, contaminada com ruído de 2%, do modelador direto para o Modelo
1; (+) reposta do modelo inverso; b) () Modelo 1 de condutividade crescente; (
-) Modelo inverso; (c) () resposta do modelador direto para o Modelo 2
(condutividade decrescente), () resposta, contaminada com ruído de 2%, do
modelador direto para o Modelo 2 (+) reposta do modelo inverso; d) () Modelo
2 de condutividade decrescente; () Modelo inverso
7.18 (a) () resposta do modelador direto para o Modelo 3 (condutividade mista) ,(
) resposta, contaminada com ruído de 2%, do modelador direto para o Modelo 1;
(+) reposta do modelo inverso; b) () Modelo 2 de condutividade mista; ()
Modelo inverso; (c) () resposta do modelador direto para o Modelo 3
(condutividade mista), () resposta, contaminada com ruído de 2%, do
modelador direto para o Modelo 4, (+) reposta do modelo inverso; d) () Modelo
4 de condutividade mista; () Modelo inverso
7.19 (a) () resposta do modelador direto para o Modelo 1 (condutividade crescente),
() resposta, contaminada com ruído de 5%, do modelador direto para o Modelo
1; (+) reposta do modelo inverso; b) () Modelo I de condutividade crescente; (
-) Modelo inverso; (c) (—) resposta do modelador direto para o Modelo 2
(condutividade decrescente), $()$ resposta, contaminada com ruido de 5%, do
modelador difeto para o Modelo 2 $(+)$ reposta do modelo inverso; d) $(-)$ Modelo 100
2 de condutividade decrescente; () Modelo Inverso
) resposta contaminada com ruído da 5% do modelador direto para o Modelo 1:
) resposed, containinada com ruido de 5% , do modelador difeto para o Modelo 1,
Modelo inverso: (c) (
(condutividade mista) () resposta contaminada com ruído de 5% do
modelador direto para o Modelo 4 $(+)$ reposta do modelo inverso: d) (
4 de condutividade mista: () Modelo inverso
7.21 Inversão paramétrica: gráfico da variação do rms com o número de iterações: para
os modelos 1 e 2, respectivamente, condutividade crescente(C) e decrescente (D).
Os valores em destaque representam o rms em percentagem para os modelos
contaminados com 1%. 2% e 5% de ruído guassiano
7.22 Inversão paramétrica: gráfico da variação do rms com o número de iterações: para
os modelos 3 e 4, respectivamente, camada central condutiva (M1) e camada central
resistiva (M2). Os valores em destaque representam o rms em percentagem para os
modelos contaminados com 1%, 2% e 5% de ruído gaussiano
7.23 Gráficos mostrando a variação do passo com a mudança de dois parâmetros (p);
p1: parâmetro referente a primeira camada, p2: parâmetro referente a segunda
camada; p3: parâmetro referente a terceira camada; (•) cada passo; (→) indica a

convergência para o mínimo da função; a) modelo 1, condutividade crescente,
mínimo da função=1,3E-12; b) modelo 2, condutividade decrescente, mínimo da $(1,2,1)$
$função=1,9.10^{-1}$; c) modelo 3, misto, minimo da função=2,0.10 ⁻¹ ; d) modelo 4,
misio, minimo da lunção=1,0.10
longo da bobina
8.2 Sondagem e imagem da i-ésima fonte no j-ésimo tempo para uma bobina
transmissora quadrada. d_j é a profundidade da imagem, R e I é a dimensão e a
corrente da fonte (Adaptado de Eaton & Hohmann, 1989)112
8.3 a) Forma de onda da corrente empregada; b) forma de onda da derivada da corrente.
Mostra um pulso típico do sistema AEM operando com freqüência angular w. As
linhas pontilhadas indicam o comprimento da função caixa onde a área da curva
w(t) é mantida. Para o critério de área igual adotado, tem-se: $t_a=1/w$ e $t_b=t_c-1/w$.
9.1 Localização da área. O retângulo branco delimita a área do levantamento AEM
(modificado de Gettings, 2000)
9.2 Mapa geológico da Bacia de San Pedro (modificado de Gettings, 2000)120
9.3 Diagrama esquemático da Bacia San Pedro (modificado de Fellows, 1999)
9.4 Mapa de interpretação da profundidade do embasamento e alinhamentos
significativos definindo estruturas geologicas (Modificado de Gettings, 2000) 125
9.5 Mapa de anomana magnetica (Modificado de Gettings, 2000)
(\mathbf{F}) $($
transmissora (1) e a circular, e a receptora (K), p_1 , p_2 , p_3 sao as resistividades das camadas da terra (em corte): h) Linhas de vôo do levantamento 120
9.7 Curva de decaimento-componente z
9.8 Mapa dos canais 14, 2, 6 e 10 do campo secundário (componente z) obtido no
levantamento AEM (pV/m^2) . O contorno em branco representa a mudanca do
comportamento do campo AEM, baseado no canal 14 componente z; e o contorno
em vermelho representa a mudança do comportamento do campo AEM, baseado no
canal 10 componente z
9.9 Mapa dos canais 14, 2, 6 e 10 do campo secundário (componente x) obtido no
levantamento AEM (pV/m ²). O contorno em branco representa a mudança do
comportamento do campo AEM, baseado no canal 14 componente z; e o contorno
em vermelho representa a mudança do comportamento do campo AEM, baseado no
canal 10 componente z
9.10 Mapa dos canais 14, 2, 6 e 10 do campo secundario (componente y) obtido no
levantamento AEM (pv/m). O contorno em branco representa a mudança do
comportamento do campo AEM, baseado no canal 14 componente Z; e o contorno
canal 10 componente z
9 11 Linhas de vôo. Em vermelho destaque para as linhas de CDL (componente z) e
perfis (componentes x e z) que serão mostrados a seguir
9.12 CDIs empilhadas dando uma visão geral do comportamento qualitativo da
condutividade da região. Escala variando de azul (menor condutividade) a rosa
(maior condutividade)
9.13 CDI (componente z) e perfis (componentes x e z)da linha 1010101
9.14 CDI (componente z) e perfis (componentes x e z) da linha 1010401140
9.15 CDI (componente z) e perfis (componentes x e z) da linha 1011601141
9.16 CDI (componente z) e perfis (componentes x e z) da linha 4012701142

9.17 CDI (componente z) e perfis (componentes x e z) da linha 4013001143
9.18 CDI (componente z) e perfis (componentes x e z) da linha 4013701
9.19 CDI (componente z) e perfis (componentes x e z) da linha 3015201145
9.20 CDI (componente z) e perfis (componentes x e z) da linha 2015901146
9.21 CDI (componente z) e perfis (componentes x e z) da linha 5600101147
9.22 CDI (componente z) e perfis (componentes x e z) da linha 5600301148
9.23 CDI (componente z) e perfis (componentes x e z)da linha 5600501149
9.24 Voxel das CDIs destacando a) toda a área interpolada b)corpo com condutividade
maior que 0,04 S/m; b) corpo com condutividade maior que 0,05 S/m; c) corpo com
condutividade maior que 0,05 S/m; d) corpo com condutividade maior que 0,005
S/m e plano AEM do canal 6151/152
9.25 Voxel das CDIs destacando a) corpo com condutividade menor que 0,005 S/m,
inclinação 45° e plano com a imagem AEM do canal 6. b) corpo com condutividade
menor que 0,005 S/m, inclinação 45° e c) corpo com condutividade menor que
0,005 S/m, inclinação 10°153/154
9.26 Localização das sondagens médias que sofrerão a inversão155
9.27 Curvas de decaimento das sondagens médias156/157/158
9.28 Mapa da profundidade da água com a localização dos poços, das sondagens
reduzidas e das sondagens elétricas verticais (SEV) existentes na área159
9.29 Voxel resultado da inversão; a) toda a área interpolada; b)corpo com condutividade
maior que 0,02 S/m; c) corpo com condutividade maior que 0,02 S/m e plano e
plano AEM do canal 6 a 250 m; d) corpo com condutividade maior que 0,02 S/m e
plano AEM do canal 6 a 300m; e) corpo com condutividade maior que 0,02 S/m e
plano AEM do canal 6 a 500m; f) Vista de baixo para o item b162/163/164
9.30 Voxel resultado da inversão; a)corpo com condutividade menor que 0,01 S/m; b)
corpo com condutividade menor que 0,01 S/m e plano AEM do canal 6 a 250 m; c)
corpo com condutividade menor que 0,01 S/m e plano AEM do canal 6 a 300m; .d)
corpo com condutividade menor que 0,01 S/m e plano AEM do canal 6 a 500m.
9.31 a) imagens da resposta AEM; b) voxel obtido utilizando as CDIs; c) voxel obtido
pela inversão. Destaque para o perfil AB167
pera inversao. Destaque para o perm AB107

LISTA DE TABELAS

TABELAPÁGINA
7.1 Modelo de profundidades e condutividades, baseado na região que será estudada (Capítulo IX) para a realização da modelagem direta
7.2 Modelos de profundidades e condutividades, para a realização da modelagem direta
 7.3 Modelos e dp: 1%, 2% e 5% são os ruídos considerados, para os modelos 1, 2, 3 e 4; a média e o desvio padrão (dp) das profundidades das 1^a e 2^a camada (c) dados em metros (m).O modelo sintético considerado foi para profundidade da 1^a camada de 300m e para a 2^a de 1000m
7.4 Resíduo quadrático médio (rms) e o número de iterações (No. It) atingidos pela inversão geométrica, para cada modelo e suas respectivas contaminações
7.5 Matriz variância-Covariância e matriz correlação para inversão geométrica para os modelos crescente, decrescente
7.6 Matriz variância-Covariância e matriz correlação para inversão geométrica para os modelos misto 1 e misto 2
7.7 Modelos de condutividade (S/m) (1 = crescente, 2 = decrescente, 3 = misto1 e 4 =misto2) com seus respectivos limites inferiores e superiores considerados.As profundidades fixadas foram de 300 e 1000m
7.8 Modelos e dp: 1%, 2% e 5% são os ruídos considerados, para os modelos 1, 2, 3 e 4; a média e o desvio padrão (dp) das condutividades das 1 ^a , 2 ^a e 3 ^a camada (c) dados em metros (S/m).O modelo sintético considerado encontra-se na Tabela 8.593
7.9 : Resíduo quadrático médio (rms) e o número de iterações (No. It) atingidos pela inversão paramétrica, para cada modelo e suas respectivas contaminações93
7.10 Matriz variância-Covariância e matriz correlação para inversão paramétrica para os modelos crescente. decrescente
7.11 Matriz variância-Covariância e matriz correlação para inversão paramétrica para os modelos misto 1 e misto 2
9.1 Posicionamento das janelas. Tempo em microssegundos após o final do pulso 130
I CDI versus inversao -NLSICI