METAMORFISMO E QUÍMICA MINERAL DAS ROCHAS METASSEDIMENTARES

1 - INTRODUÇÃO:

Neste capítulo são apresentados e interpretados os dados de química dos minerais que compõem as rochas metassedimentares. O estudo tem como objetivo principal a determinação das condições de pressão e temperatura que estas rochas foram submetidas.

Os metassedimentos da faixa oeste apresentam paragêneses minerais variadas, todas típicas de pelitos submetidos a metamorfismo de fácies anfibolito, zona barroviana da estaurolita/cianita. Foram escolhidas 5 amostras representativas das variações mineralógicas apresentadas pelas rochas metassedimentares. As abreviações dos nomes de minerais utilizadas são de Kretz (1983).

A determinação da composição dos minerais foi obtida com o uso de uma microssonda eletrônica CAMECA SX 50, do Laboratório de Microssonda Eletrônica da Universidade de Brasília. As condições de uso foram 15KV e 25nA, com feixe variando entre 5 e 10 μ . Silicatos naturais foram utilizados como padrões para todos os elementos.

2 - QUÍMICA MINERAL:

Cinco amostras de xistos, com representatividade litológica e areal, foram analisadas para a determinação da composição de sete minerais; anfibólio, biotita, muscovita, estaurolita, epídoto, plagioclásio e granada. Nos dois últimos minerais foram feitos perfis com a finalidade de observar a zonação composicional.

A tabela IV-1 apresenta as amostras com as respectivas paragêneses analisadas e o número de análises feitas. Os dados obtidos são apresentados no anexo 1.

36

real real real real real real real real									
Amostra	Rocha	Hbl	Pl	Grt	Bt	Ms	St	Ер	Total
MR-101B	Hbl-Bt xisto c/Ky	18	23	28	20				89
MR-31C	Grt-Bt xisto		24	39	22	3		3	91
MR-173	Grt-Bt xisto c/Ky		23	52	40	6			121
MR-104A	Grt-St-Ms-Bt xisto		13	20	18		14		65
MR-137A	Grt-St-Ms-Bt xisto		16	41	22	3	18		100
Total		18	99	180	122	12	32	3	466

Tabela IV-1 Número de análises por minerais e amostras.

2.1 - Análises minerais:

Anfibólio: O anfibólio da amostra MR-101B (Hbl-Bt xisto) contém teores de TiO₂ inferiores a 0,5% (\approx 0,029 íons pfu, por fórmula unitária), CaO + NaO maior que 1,34% (\approx 2,2 íons pfu) e NaO menor que 0,67% (\approx 0,58 íons pfu). Segundo a classificação de Hawthorne (1981) estes parâmetros colocam o anfibólio desta amostra no grupo de anfibólios cálcicos (hornblenda) e no gráfico que utiliza a razão Si x Mg/(Mg+Fe), o posicionamento da média dos grãos dá-se no campo da hornblenda tschermatítica no limite com o campo da tschermaquita (figura IV-1).

Figura IV-1 Classificação de anfibólio da amostra de metassedimento MR-101B.

A Fórmula estrutural do anfibólio da amostra MR-101B é:

 $\begin{array}{c} K_{(0,038\text{-}0,053)}, & Na_{(0,148\text{-}0,291)} & \left(Na_{(0,326\text{-}0,408)}, & Ca_{(1,529\text{-}1,674)}\right) & \left(Fe^{2^{+}}_{(1,207\text{-}1,431)}, & Mg_{(2,150\text{-}2,345)}, \\ Mn_{(0,038\text{-}0,050)}, & Cr_{(0\text{-}0,008)}, & Fe^{3^{+}}_{(0,355\text{-}0,534)}, & Ti_{(0,017\text{-}0,043)}, & Al_{(0,939\text{-}1,151)}\right) & \left(Al_{(1,684\text{-}1,774)}, & Si_{(6,226\text{-}6,316)}\right) & O_{22} & (OH, F, Cl)_2 \end{array}$

Biotita:

A análise de biotita foi feita em grãos individuais, com cerca de duas análises por grão. Para a classificação das micas foi utilizado o diagrama de razões de Al/Si x X_{Mg} (Mg/Mg+Fe) (figura IV-2).

As biotitas são bastante ricas em Mg, com X_{Mg} variando de 0,59 a 0,69. A classificação da maioria das amostras fica no campo das biotitas com uma amostra no campo das flogopitas. Estas micas possuem razões Al/Si de 0,59 a 0,69, um meio termo entre as razões das micas ricas em Fe-Mg e Al, que variam de 0,33 a 0,8 respectivamente.

As fórmulas estruturais da biotita para cada amostra são as seguintes:

$$\begin{split} & \text{MR-101B} \ \Rightarrow \ K_{(0,856-0,852)}, \ Na_{(0,026-0,040)}, \ Ca_{(0-0,005)} \ \left(\text{Mg}_{(1,635-1,730)}, \ Fe^{2^+}_{(0,686-0,778)}, \ Ti_{(0,040-0,079)}, \\ & Fe^{3^+}_{(0-0,093)}, Al_{(0,334-0,421)} \right) \left(Al_{(1,189-1,223)}, Si_{(2,777-2,811)} \right) O_{10} \ (\text{OH}, F_{*})_{2} \\ & \text{MR-104A} \ \Rightarrow \ K_{(0,779-0,888)}, \ Na_{(0,028-0,042)}, \ Ca_{(0-0,005)} \ \left(\text{Mg}_{(1,541-1,700)}, \ Fe^{2^+}_{(0,461-0,922)}, \ Ti_{(0,070-0,090)}, \\ & Fe^{3^+}_{(0-0,163)}, Al_{(0,234-0,371)} \right) \left(Al_{(1,192-1,263)}, Si_{(2,737-2,808)} \right) O_{10} \ (\text{OH}, F_{*})_{2} \\ & \text{MR-137A} \ \Rightarrow \ K_{(0,881-0,919)}, \ Na_{(0,025-0,040)}, \ Ca_{(0-0,007)} \ \left(\text{Mg}_{(1,483-1,646)}, \ Fe^{2^+}_{(0,782-0,947)}, \ Ti_{(0,074-0,108)}, \\ & Al_{(0,320-0,443)} \right) \left(Al_{(1,199-1,254)}, Si_{(2,746-2,801)} \right) O_{10} \ (\text{OH}, F_{*})_{2} \\ & \text{MR-173} \ \Rightarrow \ K_{(0,835-0,891)}, \ Na_{(0,022-0,037)}, \ Ca_{(0-0,007)} \ \left(\text{Mg}_{(1,274-1,469)}, \ Fe^{2^+}_{(0,910-1,012)}, \ Ti_{(0,090-0,162)}, \\ & Al_{(0,317-0,479)} \right) \left(Al_{(1,192-1,259)}, Si_{(2,741-2,808)} \right) O_{10} \ (\text{OH}, F_{*})_{2} \\ & \text{MR-31C} \ \Rightarrow \ K_{(0,868-0,965)}, \ Na_{(0,014-0,031)}, \ Ca_{(0-0,008)} \ \left(\text{Mg}_{(1,259-1,359)}, \ Fe^{2^+}_{(0,927-1,057)}, \ Ti_{(0,138-0,194)}, \\ & Al_{(0,295-0,452)} \right) \left(Al_{(1,217-1,281)}, Si_{(2,719-2,781)} \right) O_{10} \ (\text{OH}, F_{*})_{2} \\ \end{array}$$

Muscovita:

A muscovita analisada apresenta razões Si/Al menores que 3 (1,08 a 1,17), e para cada amostra foram calculadas as seguintes fórmulas estruturais:

$$\begin{split} \text{MR-137A} &\Rightarrow K_{(0,729\text{-}0,744)}, \ \text{Na}_{(0,197\text{-}0,237)}, \ \text{Ca}_{(0\text{-}0,001)} \ \left(\text{Mg}_{(0,077\text{-}0,102)}, \ \text{Fe}^{2+}_{(0,082\text{-}0,123)}, \ \text{Ti}_{(0,024\text{-}0,036)}, \\ \text{Cr}_{(0,003\text{-}0,006)}, \ \text{Fe}^{3+}_{(0\text{-}0,075)}, \ \text{Al}_{(1,756\text{-}1,827)} \ \right) \left(\ \text{Al}_{(0,541\text{-}0,949)}, \ \text{Si}_{(3,051\text{-}3,059)} \ \right) O_{10} \ (\text{OH}, \ \text{F},)_2 \\ \text{MR-173} &\Rightarrow K_{(0,714\text{-}0,807)}, \ \text{Na}_{(0,174\text{-}0,222)}, \ \text{Ca}_{(0\text{-}0,006)} \ \left(\text{Mg}_{(0,074\text{-}0,102)}, \ \text{Fe}^{2+}_{(0,033\text{-}0,060)}, \ \text{Ti}_{(0,004\text{-}0,031)}, \ \text{Cr}_{(0\text{-}0,003)}, \ \text{Fe}^{3+}_{(0\text{-}0,017)}, \ \text{Al}_{(1,806\text{-}1,924)} \ \right) \left(\ \text{Al}_{(0,911\text{-}0,980)}, \ \text{Si}_{(3,020\text{-}3,089)} \ \right) O_{10} \ (\text{OH}, \ \text{F},)_2 \\ \text{MR-31C} &\Rightarrow K_{(0,846\text{-}0,903)}, \ \text{Na}_{(0,058\text{-}0,086)}, \ \text{Ca}_{(0\text{-}0,005)} \ \left(\text{Mg}_{(0,088\text{-}0,166)}, \ \text{Fe}^{2+}_{(0,085\text{-}0,101)}, \ \text{Ti}_{(0,023\text{-}0,050)}, \ \text{Cr}_{(0\text{-}0,006)}, \ \text{Fe}^{3+}_{(0\text{-}0,085)}, \ \text{Al}_{(1,679\text{-}1,818)} \ \right) \left(\ \text{Al}_{(0,888\text{-}0,905)}, \ \text{Si}_{(3,095\text{-}3,112)} \ \right) O_{10} \ (\text{OH}, \ \text{F},)_2 \\ \end{array}$$

Estaurolita:

A estaurolita, além de mineral índice no esquema zonal barroviano, indica que a rocha é um pelito verdadeiro, rico em Al e pobre em Ca (Yardley, 1989), isto é sem contribuição de rochas carbonáticas.

Foram analisadas duas amostras de xistos com estaurolita, MR-104A e MR-137A, cujos valores de X_{Mg} variam pouco (0,21-0,25), sendo suas fórmulas estruturais:

Epidoto:

O epidoto da amostra MR-31C teve calculada a seguinte fórmula estrutural: MR-31C \Rightarrow Ca_(1,960-2,013), Fe³⁺_(0,353-0,455), Al_(2,496-2,509), Si_(3,042-3,050), O₁₂ OH

2.2 - Análises de porfiroblastos de plagioclásio e granada:

Cristais zonados são tidos como o registro químico pela qual a história da evolução metamórfica da rocha é registrada (Spear & Selverstone, 1983). Assim sendo, foram realizadas análises composicionais de porfiroblastos de plagioclásio e granada, na forma de perfis, em grãos de 0,5 a 1,5mm, com a finalidade de observar as variações composicionais, já que estas variações são resultantes da evolução metamórfica.

Plagioclásio:

As análises de microssonda eletrônica indicam que o plagioclásio dos xistos é do tipo oligoclásio, com An_{23-27} nos granada-estaurolita-muscovita-biotita xistos (MR-104A e MR-137A) e granada- biotita xistos (MR-173), e andesina, An_{30-35} , nos hornblenda-biotita xistos (MR-101B). O plagioclásio do granada-biotita xisto (MR-31C) tem teores de anortita altos, An_{77-91} , o que diferencia este xisto dos demais.

Figura IV-3 Perfis composicionais de plagioclásio dos metassedimentos.

Foram calculadas as seguintes fórmulas estruturais para o plagioclásio dos xistos:

$$\begin{split} \text{MR-101B} &\Rightarrow K_{(0-0,016)}, \, \text{Na}_{(0,583-0,647)}, \, \text{Ca}_{(0,281-0,332)}, \, \text{Fe}^{3+}_{(0,001-0,008)}, \, \text{Al}_{(1,279-1,336)}, \, \text{Si}_{(2,683-2,736)}, \, \text{O}_8 \\ \text{MR-104A} &\Rightarrow K_{(0-0,019)}, \, \text{Na}_{(0,646-0,722)}, \, \text{Ca}_{(0,206-0,265)}, \, \, \text{Fe}^{3+}_{(0-0,022)}, \, \, \text{Al}_{(1,196-1,311)}, \, \, \text{Si}_{(2,711-2,821)}, \, \text{O}_8 \\ \text{MR-137A} &\Rightarrow K_{(0,001-0,005)}, \, \text{Na}_{(0,650-0,712)}, \, \text{Ca}_{(0,175-0,261)}, \, \text{Fe}^{3+}_{(0-0,007)}, \, \text{Al}_{(1,178-1,293)}, \, \text{Si}_{(2,742-2,845)}, \, \text{O}_8 \\ \text{MR-173} &\Rightarrow K_{(0,002-0,007)}, \, \text{Na}_{(0,631-0,738)}, \, \text{Ca}_{(0,166-0,268)}, \, \text{Fe}^{3+}_{(0-0,004)}, \, \, \text{Al}_{(1,171-1,281)}, \, \text{Si}_{(2,742-2,854)}, \, \text{O}_8 \\ \text{MR-31C B.} &\Rightarrow K_{(0,001-0,006)}, \, \text{Na}_{(0,188-0,442)}, \, \text{Ca}_{(0,504-0,794)}, \, \text{Fe}^{3+}_{(0-0,007)}, \, \, \text{Al}_{(1,494-1,788)}, \, \text{Si}_{(2,219-2,515)}, \, \text{O}_8 \\ \text{MR-31C N.} &\Rightarrow K_{(0,-0,006)}, \, \text{Na}_{(0,046-0,417)}, \, \text{Ca}_{(0,531-0,979)}, \, \text{Fe}^{3+}_{(0-0,007)}, \, \, \text{Al}_{(1,463-1,941)}, \, \, \text{Si}_{(2,040-2,550)}, \, \text{O}_8 \\ \end{array}$$

Perfis composicionais de alguns grãos de plagioclásio, de 0,7 a 1,5mm, foram confeccionados (figura IV-3) com a finalidade de observar variações através dos grãos. A maioria das amostras apresenta grãos de plagioclásio com um perfil composicional constante, sem variação significativa entre núcleo e borda. Uma exceção é a composição dos grãos da amostra MR-31C (granada-biotita xisto) que apresentam uma zonação normal, com composição variando entre anortita, An₉₁, no núcleo, a bitownita, An₇₇, nas bordas.

Na maioria dos xistos a composição do plagioclásio varia entre oligoclásio e andesina; o que é compatível com o grau metamórfico a que estas rochas foram submetidas.

Plagioclásio com alto teor de anortita não é comum em rochas metamórficas de origem pelítica. Os grãos da amostra MR-31C são ricos em anortita, deste modo a sua composição é interpretada como reliquiar. A composição original destes grãos pode estar relacionada a uma significativa contribuição ígnea para a fonte dos sedimentos. Um processo rápido de sedimentação, com pouca ou nenhuma alteração intempérica, aliado ao tamanho do grão, contribuiu para que a composição original do feldspato desta amostra não fosse modificada pelo metamorfismo.

Granada:

Na maioria dos xistos a granada é dominada pelo par almandina (Fe²⁺) Alm₆₇₋₇₂ e piropo (Mg) Prp₍₁₇₋₂₆₎. Espessartita (Mn) Sps₍₁₋₁₀₎ e grossulária (Ca) Grs₍₁₋₁₀₎ aparecem em teores pouco expressivos, e uvarovita (Cr) e andradita (Fe³⁺e Ti) são praticamente inexistentes. A granada do granada-biotita xisto (MR-31C) apresenta um pequeno aumento nos teores de grossulária (Grs₁₋₁₆) no núcleo dos grãos.

Foram calculadas as seguintes fórmulas estruturais para as granadas dos xistos:

$$\begin{split} & \text{MR-104A N} \Rightarrow \text{Fe}^{2+}_{(1,997-2,117)}, \ \text{Mg}_{(0,668-0,705)}, \ \text{Mn}_{(0,099-0,154)}, \ \text{Ca}_{(0,109-0,177)}, \ \text{Fe}^{3+}_{(0-0,045)}, \\ & \text{Al}_{(1,918-1,978)}, \ \text{Si}_{(2,991-3,033)}, \ \text{O}_{12} \\ & \text{MR-137A N} \Rightarrow \text{Fe}^{2+}_{(1,950-2,050)}, \ \text{Mg}_{(0,530-0,580)}, \ \text{Mn}_{(0,170-0,260)}, \ \text{Ca}_{(0,160-0,250)}, \ \text{Fe}^{3+}_{(0-0,120)}, \\ & \text{Al}_{(1,960-2,030)}, \ \text{Si}_{(2,920-3,010)}, \ \text{O}_{12} \\ & \text{MR-137A B} \Rightarrow \text{Fe}^{2+}_{(1,960-2,130)}, \ \text{Mg}_{(0,470-0,570)}, \ \text{Mn}_{(0,090-0,200)}, \ \text{Ca}_{(0,160-0,250)}, \ \text{Fe}^{3+}_{(0-0,190)}, \\ & \text{Al}_{(1,950-2,030)}, \ \text{Si}_{(2,880-3,000)}, \ \text{O}_{12} \\ & \text{MR-173 N} \Rightarrow \text{Fe}^{2+}_{(2,030-2,120)}, \ \text{Mg}_{(0,680-0,800)}, \ \text{Mn}_{(0,060-0,080)}, \ \text{Ca}_{(0,090-0,110)}, \ \text{Fe}^{3+}_{(0-0,090)}, \ \text{Al}_{(1,950-2,030)}, \ \text{Si}_{(2,970-3,030)}, \ \text{O}_{12} \\ & \text{MR-173 B} \Rightarrow \text{Fe}^{2+}_{(2,080-2,270)}, \ \text{Mg}_{(0,530-0,760)}, \ \text{Mn}_{(0,050-0,080)}, \ \text{Ca}_{(0,090-0,290)}, \ \text{Fe}^{3+}_{(0-0,090)}, \ \text{Al}_{(1,940-2,010)}, \ \text{Si}_{(2,960-3,030)}, \ \text{O}_{12} \\ & \text{MR-31C N} \Rightarrow \text{Fe}^{2+}_{(1,922-2,167)}, \ \text{Mg}_{(0,368-0,649)}, \ \text{Mn}_{(0,100-0,137)}, \ \text{Ca}_{(0,150-0,523)}, \ \text{Fe}^{3+}_{(0-0,114)}, \ \text{Al}_{(1,869-1,957)}, \ \text{Si}_{(2,988-3,064)}, \ \text{O}_{12} \\ & \text{MR-31C B} \Rightarrow \text{Fe}^{2+}_{(1,858-2,167)}, \ \text{Mg}_{(0,346-0,638)}, \ \text{Mn}_{(0,056-0,137)}, \ \text{Ca}_{(0,150-0,625)}, \ \text{Fe}^{3+}_{(0-0,130)}, \ \text{Al}_{(1,877-1,957)}, \ \text{Si}_{(2,988-3,064)}, \ \text{O}_{12} \\ \end{array}$$

A granada apresenta um perfil composicional do tipo "sino" e a composição é dominada por almandina que aumenta do centro para as bordas, ocorrendo o inverso para o piropo. Os perfis de espessartita e grossulária são praticamente planos e os teores pouco representam na composição final que é dominado pelo par almandina piropo (figura IV-4). Na borda de alguns grãos ocorre uma particular queda nos teores de almandina.

Feições texturais mostram que a granada cresceu sobre a estaurolita, isto é, a partir do consumo desta (ver fotomocrografias III-13 e III-14, capítulo III).

O padrão de crescimento de almandina do núcleo para as bordas é interpretado por Hollister (1966) como um fracionamento dos elementos a uma temperatura constante, e Treczinski (1977) atribui este padrão a uma reação contínua acompanhada por aumento de temperatura.

A queda dos teores de almandina nas bordas de alguns grãos pode ser devida a um reequilíbrio da granada com a matriz durante a diminuição de temperatura após o pico metamórfico, onde estaurolita ou biotita retomam seu crescimento, aumentando o consumo de ferro da matriz e as granadas conseqüentemente tendo suas bordas empobrecidas em ferro.

A razão X_{Mg} varia de 0,20 a 0,28 no interior dos grãos decrescendo para valores de 0,13 a 0,22 nas bordas. Os valores são mais baixos que o da estaurolita e da biotita das mesmas amostras, o que é coerente com os modelos de coexistência mineral de xistos pelíticos (Yardley; 1989, Philpotts; 1990).

Figura IV-4 perfis composicionais de granada dos metassedimentos.

Figura IV-4 (cont) perfis composicionais de granada dos metassedimentos.

3 - GEOTERMOBAROMETRIA:

As rochas metassedimentares da seqüência vulcanossedimentar de Mara Rosa possuem paragêneses que favorecem a determinação das condições de temperatura e pressão do metamorfismo. As amostras escolhidas para o estudo apresentam associações metamórficas variadas, formadas durante o pico do metamorfismo, com poucas evidências de retrometamorfismo. Foram selecionadas amostras distribuídas ao longo de toda a faixa oeste a fim de se obter dados de pressão e temperatura (P e T) para toda a sua extensão.

3.1 - Conceitos básicos:

A geotermobarometria tem por finalidade quantificar as condições de temperatura (T) e pressão (P) do metamorfismo a partir da composição química de minerais coexistentes em uma rocha (Spear 1989, 1993).

A determinação da temperatura é baseada em reações de troca catiônica, que evoluem com grande variação de entalpia (Δ H), pequena variação de volume (Δ V) e sendo por isso, pouco dependentes da pressão. A substituição de Fe por Mg é um bom exemplo de reação de troca catiônica estando presente na maioria dos minerais metamórficos ferro-magnesianos como granada, biotita, estaurolita, cordierita, etc. Em geral as reações que envolvem esta substituição são bons geotermômetros (Philpotts, 1990; Spear, 1993).

A determinação da pressão é baseada em reações metamórficas que apresentam grande variação de volume (Δ V). Em geral, a variação química dos minerais presentes nestas reações ocorre via substituições acopladas, por exemplo a substituição do plagioclásio (Ca Al Na₋₁ Si₋₁) que envolve cátions com valências diferentes (Spear, 1993).

3.2 - Metodologia:

A determinação das condições de P e T foi feita com o uso do programa Thermocalc, um banco de dados termodinâmicos internamente consistente (Powell & Holland, 1988), sendo utilizada a versão V2.6 com banco de dados atualizado em abril de 1996. Foram utilizadas as seguintes paragêneses minerais para a determinação de P e T:

MR-101A (Hbl-Bt xisto c/ Ky) - Hbl, Pl, Grt, Bt, Qtz e Ky. MR-104A (Grt-St-Ms-Bt xisto) - Pl, Grt, Bt, St, Ms e Qtz. MR-137A (Grt-St-Ms-Bt xisto) - Pl, Grt, Bt, St, Ms, Qtz e Ky. MR-173 (Grt-Bt xisto c/ Ky) - Pl, Grt, Bt, Ms, Qtz e Ky. MR-31C (Grt-Bt xisto) - Pl, Grt, Bt, Ms, Ep e Qtz.

3.3 - Resultados:

Os cálculos forneceram valores de pressão (P) e temperatura (T) cujos resultados obtidos são apresentados na tabela IV-2.

Amostra	Rocha	P (Kbar)	T (°C)	
MR-137A 2	Grt-St-Ms-Bt xisto	$7,3 \pm 0,6$	609 ± 12	
MR-137A 3	Grt-St-Ms-Bt xisto	$7,6 \pm 0,8$	613 ± 23	
MR-101B 3	Hbl-Bt xisto c/Ky	$5,8 \pm 1,1$	731 ± 41	
MR-101B 5	Hbl-Bt xisto c/Ky	$6,0 \pm 1,1$	711 ± 43	
MR-173 2	Grt- Bt xisto c/Ky	5,6±1,1	710 ± 43	
MR-173 3	MR-173 3 Grt -Bt xisto c/Ky		706 ± 52	
MR-104A 2	Grt-St-Ms-Bt xisto	$6,6 \pm 1,0$	638 ± 35	
MR-104A 4	Grt-St-Ms-Bt xisto	8,1 ± 0,9	616 ± 32	
MR-31C 1	Grt-Bt xisto	8,1 ± 0,6	608 ± 20	
MR-31C 2	Grt-Bt xisto	$5,8 \pm 1,4$	657 ± 47	

Tabela IV-2 Dados de temperatura e pressão das rochas metassedimentares da faixa oeste.

O número após a identificação da amostra refere-se a diferentes campos da mesma amostra.

Com base nos dados de temperatura e pressão obtidos e apresentados na tabela VI-2 e figura IV-5 foi possível obter as seguintes interpretações:

Os metassedimentos apresentam dois conjuntos P-T distintos: O conjunto onde razão P/T é alta, como na amostra MR-137A que apresenta pressão de cerca de 7,5Kbar e temperatura de cerca de 620°C, e o conjunto onde a razão P/T mais é mais baixa, como nas amostras MR-101B, MR-173 que apresentam pressão de 5 a 6 Kbar e temperatura de 700 a 740°C.

As amostras MR-101B e MR-173 apresentam em sua composição mineral cianita, mas são plotadas abaixo da reta univariante cianita/silimanita, indicando uma condição meta-estável da cianita, isto é, sua geração ocorreu em condições de razão P/T mais alta, mas não foi totalmente reequilibrada nas novas condições.

As amostras MR-104A e MR-31C apresentam valores transitórios da razão P/T, principalmente no que se refere a pressão. Esta variação pode ser interpretada como o registro dos dois eventos metamórficos, mas também pode ser devida a um baixo grau de homogeneização metamórfica da rocha. Particularmente no caso da amostra MR-31C o plagioclásio, cuja composição é importante no cálculo de pressão, apresenta uma composição reliquiar ígnea, o que compromete a confiabilidade dos resultados obtidos para esta amostra.

4 - CONCLUSÕES:

Os dados de geotermobarometria dos metassedimentos mostram a existência de dois conjuntos P-T, ambos do fácies anfibolito, zona da cianita/silimanita. Um conjunto apresenta pressão de cerca de 7,5Kbar e temperatura de cerca de 620°C, e outro onde a pressão é mais baixa, de 5 a 6 Kbar, e a temperatura mais alta, de 700 a 740°C.

Os valores transitórios de P-T das amostras MR-104A e MR-31C, entre os dois conjuntos encontrados, são interpretados como resultado de cálculos a partir de uma paragênese mineral que não apresenta um equilíbrio químico total.

A presença de cianita em amostras cujos dados de P-T estão abaixo das condições de geração de cianita indica que a rocha já havia estado em condições de pressão mais alta.

Os dados de P-T podem indicar dois eventos metamórficos distintos, mas também podem representar um gradiente metamórfico entre os pontos amostrados, ou ainda ambos.

Para evidenciar a existência de um gradiente metamórfico é necessária uma quantidade muito maior de pontos de amostragem de P-T com distribuição areal homogênea, e para evidenciar a existência de dois eventos pode-se fazer a datação de cada um dos conjuntos de P-T.