

PROCESSAMENTO E INTERPRETAÇÃO DE DADOS DE GEOFÍSICA AÉREA NO BRASIL CENTRAL E SUA APLICAÇÃO À GEOLOGIA REGIONAL E À PROSPECÇÃO MINERAL

MARCELO DE LAWRENCE BASSAY BLUM TESE DE DOUTORAMENTO N^o 30

Orientadores:	Roberto Alexandre Vitória de Moraes Augusto Cesar Bittencourt Pires		
Examinador:	Carlos Alberto Mendonça		
Examinador:	Luiz Fernando Santana Braga		
Examinador:	Reinhardt Adolfo Fuck		
Examinador:	Vasile Marza		

BRASÍLIA

1999

REFERÊNCIA:

Blum, M.L.B. 1999. *Processamento E Interpretação De Dados De Geofísica Aérea No Brasil Central E Sua Aplicação À Geologia Regional E À Prospecção Mineral.* Instituto de Geociências, Universidade de Brasília, Brasília, Tese de Doutoramento, 229p.

Índice

	Página
1 – Introdução	1
1.1 APRESENTAÇÃO	1
1.2 OBJETIVOS	1
1.3 LOCALIZAÇÃO DA ÁREA ESTUDADA	1
1.4 METODOLOGIA	2
2- O Arcabouço Geológico do Noroeste de Goiás e Sudoeste do Tocantins	4
2.1 SÍNTESE GEOLÓGICA	4
2.2 MAPA GEOLÓGICO DA ÁREA DE ESTUDO	7
2.3 DISCUSSÃO	8
3 - Origem dos Dados em Estudo	10
3.1 APRESENTAÇÃO	10
3.2 O PROJETO GEOFÍSICO BRASIL - CANADÁ	10
3.2.1 Objetivo	12
3.2.2 Aquisição dos Dados	12
3.2.2.1 ESPECIFICAÇÕES DE VÔO	12
3.2.2.2 SENSORES	12
3.2.2.3 TRATAMENTO PRELIMINAR	13
3.2.2.4 GEOQUÍMICA EM SEDIMENTO DE CORRENTE	13
3.2.3 Produtos	13
3.2.4 Produção Científica Decorrente	13
3.3 DADOS GRAVIMÉTRICOS	14
4 - Técnicas de Tratamento de Dados Geofísicos	16
4.1 APRESENTAÇÃO	16
4.2 O PRÉ-PROCESSAMENTO DOS DADOS	17
4.2.1 Avaliação dos Dados	17
4.2.2 Interpolação da Malha Original em Malha Regular	18
4.2.2.1 MÉTODOS DE INTERPOLAÇÃO 2-D	18
4.2.2.2 CÉLULA UNITÁRIA	19
4.2.3 Redução do IGRF/DGRF de Dados Magnéticos	20
4.2.4 Micronivelamento	20
4.3 FORMAS DE APRESENTAÇÃO DOS DADOS	20
4.4 FORMAS DE INTERPRETAÇÃO	21
4.4.1 Filtragens em Geral	22
4.4.1.1 TRANSFORMADA RÁPIDA DE FOURIER	22
4.4.1.2 MODELOS ESTATÍSTICOS PARA INTERPRETAÇÃO DE DADOS DE CAMPO POTENCIAL	23
4.4.1.3 FILTROS USADOS (DOMÍNIO DO NÚMERO DE ONDA)	25

	31
4.4.3 Gradiente Horizontal	32
4.4.4 Sinal Analítico	32
4.4.5 Fase do Sinal Analítico	35
4.4.6 Terraceamento	35
4.4.7 Superfície Curie	36
4.4.8 Modelagem e Inversão de Dados Magnéticos e Gravimétricos	39
4.4.8.1 MÉTODO DIRETO	39
4.4.8.2 MÉTODO INVERSO	42
4.4.9 Técnicas de Tratamento de Dados Gamaespectrométricos	43
4.4.9.1 RESPOSTAS ESPECTROMÉTRICAS DOS MATERIAIS	43
4.4.9.2 INTERPRETAÇÕES	45
5 - Coleta e Redução de Dados Gravimétricos	48
5.1 APRESENTAÇÃO	48
5.2 LEVANTAMENTO GRAVIMÉTRICO	49
5.2.1 Correções	50
5.2.1.1 CORREÇÃO DE LATITUDE	50
5.2.1.2 CORREÇÃO DE AR-LIVRE (ALTITUDE)	50
5.2.1.3 CORREÇÃO DE MARÉ TERRESTRE	50
5.2.1.4 CORREÇÃO BOUGUER	51
5.2.1.5 CORREÇÃO DE TERRENO OU TOPOGRÁFICA	51
5.2.1.6 ANOMALIA E VALOR BOUGUER	53
5.2.2 Determinações de Densidade	54
5.2.2.1 DETERMINAÇÃO EM LABORATÓRIO	54
5.2.2.2 MEDIDAS EM POÇOS	54
	51
5.2.2.3 MÉTODO DE NETTLETON	54
5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS	55
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 – Levantamento Gravimétrico em Crixás e Itapaci, GO 	55 56
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 – Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 	55 56 56
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 – Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 	55 56 56 56
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 – Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 	55 56 56 56 63
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 – Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 	55 56 56 56 63 64
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 	55 56 56 56 63 64 65
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 6.2.1.3 VANTAGENS E DESVANTAGENS 	55 56 56 56 56 63 64 65 65
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 6.2.1.3 VANTAGENS E DESVANTAGENS 6.2.1.4 APLICAÇÃO NA ÁREA DE ESTUDO 	55 56 56 56 56 63 64 65 65 65
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 6.2.1.3 VANTAGENS E DESVANTAGENS 6.2.1.4 APLICAÇÃO NA ÁREA DE ESTUDO 6.2.2 Estimativa de Densidades 	55 56 56 56 63 64 65 65 65 65 66
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 6.2.1.3 VANTAGENS E DESVANTAGENS 6.2.1.4 APLICAÇÃO NA ÁREA DE ESTUDO 6.2.2 Estimativa de Densidades 6.2.1. NETTLETON 2-D 	55 56 56 56 56 63 64 65 65 65 65 66 66
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 6.2.1.3 VANTAGENS E DESVANTAGENS 6.2.1.4 APLICAÇÃO NA ÁREA DE ESTUDO 6.2.2 Estimativa de Densidades 6.2.2.1 NETTLETON 2-D 6.2.2.2 PARASNIS AUTOMÁTICO 	55 56 56 56 56 63 64 65 65 65 65 65 66 66 66 68
 5.2.2.3 MÉTODO DE NETTLETON 5.2.2.4 MÉTODO DE PARASNIS 6 - Levantamento Gravimétrico em Crixás e Itapaci, GO 6.1 APRESENTAÇÃO 6.2 METODOLOGIA 6.2.1 Correção Digital de Terreno 6.2.1.1 CONSTRUÇÃO DO DIAGRAMA 6.2.1.2 A CORREÇÃO 6.2.1.3 VANTAGENS E DESVANTAGENS 6.2.1.4 APLICAÇÃO NA ÁREA DE ESTUDO 6.2.2 Estimativa de Densidades 6.2.2.1 NETTLETON 2-D 6.2.2.2 PARASNIS AUTOMÁTICO 6.2.2.3 MEDIÇÕES EM LABORATÓRIO 	55 56 56 56 63 64 65 65 65 65 66 66 66 68 68

7 – Tratamento e Interpretação dos Dados Aeromagnéticos e	76	
Aerogamaespectrométricos	/6	
7.1 APRESENTAÇÃO	76	
7.2 O PRÉ-PROCESSAMENTO DOS DADOS	76	
7.2.1 Interpolação em Malha Regular	79	
7.2.2 Micronivelamento	84	
7.3 PROCESSAMENTO E INTERPRETAÇÃO DOS DADOS AEROMAGNÉTICOS	87	
7.3.1 O Espectro de Potência	94	
7.3.2 Filtragens Aplicadas no Domínio de Fourier	95	
7.3.2.1 FILTROS BUTTERWORTH E DE COSSENO	95	
7.3.2.2 REDUÇÃO AO POLO, PSEUDO-GRAVIDADE E SUSCEPTIBILIDADE APARENTE	99	
7.3.2.3 FILTROS E TÉCNICAS DE REALCE DE FONTE MAGNÉTICA	99	
7.3.3 Superfície Curie Interpretada	114	
7.3.4 Interpretação e Integração dos Dados Magnéticos	122	
7.3.4.1 IMAGENS MAGNÉTICAS E O ARCABOUÇO ESTRUTURAL	122	
7.3.4.2 MAPAS DE INTERPRETAÇÃO MAGNÉTICO – GEOLÓGICA	135	
7.4 INTERPRETAÇÃO DOS DADOS GAMAESPECTROMÉTRICOS AÉREOS	139	
7.4.1 Relações com a Topografia	139	
7.4.2 Domínios Gamaespectrométricos Básicos	139	
7.4.3 Imagens Ternárias e Interpretação	140	
7.4.4 Potássio Anômalo e Urânio Anômalo		
7.5 INTEGRAÇÃO DOS MAPAS DE INTERPRETAÇÃO MAGNÉTICA E DE INTERPRETAÇÃO GAMAESPECTROMÉTRICA		
8 - Modelagem e Inversão de dados Gravimétricos em Terrenos Granitóide-		
Greenstone: Regiões de Crixás, Guarinos e Pilar de Goiás	156	
8.1 APRESENTAÇÃO	156	
8.2 METODOLOGIA E RESULTADOS	156	
8.2.1 Modelos 2-D e Inversão 2,5-D	157	
8.2.1.1 PROCEDIMENTOS	157	
8.2.1.2 RESULTADOS E INTERPRETAÇÃO	158	
8.2.2 Inversão 3-D Automática	166	
9 - Integração dos Produtos de Interpretação Geofísica Aérea e Terrestre: Regiões de		
Crixás, Guarinos e Pilar de Goiás	168	
9.1 APRESENTAÇÃO	168	
9.2 CONFECÇÃO DO MAPA INTEGRADO	168	
9.3 MAPA DE INTEGRAÇÃO: DISCUSSÃO	169	
10 – Conclusões	173	
Apêndices	178	
APÊNDICE 1: Geologia da Parte Central da Província Estrutural Tocantins	178	
A 1 1 DROVÍNCIA ESTRUTURAL TOCANTINS (DET): DORCÕES CENTRAL E NORTE	178	

A1.1.1 Maciço de Goiás (MGO) e Arco Magmático (ARM)	178
A1.1.1.1 <u>GREENSTONE</u> <u>BELTS</u> DO MGO	179
A1.1.1.2 ORTOGNÁISSES DO MGO	181
A1.1.1.3 TERRENOS GRANULÍTICOS	182
A1.1.1.4 COMPLEXOS MÁFICO-ULTRAMÁFICOS E SEQÜÊNCIAS VULCANOSSEDIMENTARES ADJACENTES	183
A1.1.1.5 COBERTURA DOBRADA	187
A1.1.1.6 ORTOGNAISSES E SEQÜÊNCIAS VULCANOSSEDIMENTARES NEOPROTEROZÓICOS	188
A1.1.1.7 RECURSOS MINERAIS DO MGO	189
A1.1.2 Faixa Brasília (FB)	189
A1.1.2.1 ZONA INTERNA	189
A1.1.2.2 ZONA EXTERNA	189
A1.1.2.3 RECURSOS MINERAIS DA FB	190
A1.1.3 Faixa Araguaia (FA)	191
A1.1.3.1 RECURSOS MINERAIS DA FA	192
A1.1.4 Geologia Estrutural da PET	192
A1.1.4.1 INFLEXÕES ESTRUTURAIS	192
A1.1.4.2 FALHAS DE EMPURRÃO	193
A1.1.4.3 SINTAXE DOS PIRINEUS	194
A1.1.4.4 LINEAMENTO TRANSBRASILIANO (LT)	194
A1.2 PRINCIPAIS UNIDADES FANEROZÓICAS	195
APÊNDICE 2: Subrotinas	195
(A) Subrotina MareTerr	195
(B) Subrotina CTerr	197
(C) Subrotina EXTRCT	199
(D) Subrotina Nettleton2D	200
(E) Subrotina DesvPad	202
(F) Subrotina Parasnis	202
(G) Subrotina MinQ	204
Anexos	205
ANEXO I – Lista de estações gravimétricas	205
ANEXO II – Lista de estimativas de densidade pelo método Nettleton 2-D	208
ANEXO III – Lista de estimativas de densidade pelo método Parasnis Automático	210
ANEXO IV – Lista de anomalias Ar-livre e Bouguer	213
Referências Bibliográficas	216

LISTA DE FIGURAS	Pág.
Figura 1.1: Províncias estruturais pré-cambrianas do Brasil	3
Figura 2.1: Mapa geológico simplificado da Província Estrutural Tocantins	5
Figura 2.2: Mapa geológico simplificado da área de estudo	9
Figura 3.1: Área do aerolevantamento do PGBC	11
Figura 3.2: Área do levantamento geoquímico de sedimento de corrente do PGBC	15
Figura 4.1: Padrões de distribuição de pontos	18
Figura 4.2: Onda senóide de alta freqüência ()	20
Figura 4.3: Exemplo de espectro radial	25
Figura 4.4: Esquema do sinal analítico. ()	34
Figura 4.5: Três categorias de interpretação de dados de campo potencial ()	39
Figura 4.6: Variação pela média do conteúdo de K, U e Th para algumas rochas com o acréscimo de SiO ₂ ()	46
Figura 5.1: Exemplo de procedimento para coleta de dados gravimétricos ()	50
Figura 5.2: Diagrama de Hammer ()	52
Figura 5.3: Representação esquemática de um anel cilíndrico segmentado ()	52
Figura 5.4: Exemplo de estimativa de densidade usando o método de Nettleton. ()	55
Figura 6.1: Localização da área do levantamento gravimétrico	57
Figura 6.2: Mapa geológico das regiões de Crixás e Itapaci ()/Legenda ()	58/59
Figura 6.3 : (a) Gravímetro Lacoste & Romberg (); (b) GPS (); (c) Detalhe do Altímetro Paulin; (d) Praça da Igreja de Itapaci; (e) RN-1284-P ()	60
Figura 6.4: Localização das estações gravimétricas do LGCI sobre esboço geológico e topografia suavizada	62
Figura 6.5: Formato aproximado do diagrama utilizado pelo método de correção digital de terreno ()	63
Figura 6.6: Representação pictórica da definição de janela de dados ()	66
Figura 6.7: Representação pictórica do mátodo Nettleton 2-D ()	67
Figura 6.8: Densidades calculadas pelo método Nettleton 2-D	69
Figura 6.9: Localização e valores dos pontos com densidades calculadas pelo método Parasnis Automático	70
Figura 6.10: Mapa de anomalias Bouguer calculadas com densidade fixa ()	72
Figura 6.11 : Mapa de anomalias Bouguer calculadas com densidade fixa () e retirada superfície de tendência de grau 2.	73
Figura 6.12 : Mapa de anomalias Bouguer calculadas com densidade variável e retirada superfície de tendência de grau 2.	74
Figura 6.13: Mapa residual entre anomalias Bouguer com densidade fixa e densidade variável	75
Figura 7.1 : a) Exemplo do padrão típico de linhas de produção do PGBC (N-S) e b) perfis rebatidos para identificação de problemas nas linhas de vôo e para interpretação.	77
Figura 7.2: Exemplo de linha de vôo em perfil sendo avaliada quanto à integridade e problemas em seus dados ()	78
Figura 7.3: Semivariograma da área para teste com interpolador do tipo Krigagem	79
Figura 7.4: Localização da área para teste de interpolador	80
Figura 7.5: Imagens resultantes do uso de diversos interpoladores	82
Figura 7.6 : a) espectro resultante de cada método interpolador () b) diferenças entre cada espectro e o espectro do método de splines bi-cúbicos ()	83

Figura 7.7: a) Mapa do campo magnético anômalo da área de estudo	85
b) Mapa gamaespectrométrico de urânio	86
Figura 7.8: Comparação entre os métodos decorrugação e baseado em Minty (1991) para micronivelamento ()	88
Figura 7.9: a) Mapa do campo magnético anômalo micronivelado da área de estudo	89
b) Mapa gamaespectromátrico de contagem total micronivelado da área de estudo	90
c) Mapa gamaespectromátrico de potássio micronivelado da área de estudo	91
d) Mapa gamaespectromátrico de tório micronivelado da área de estudo	92
e) Mapa gamaespectromátrico de urânio micronivelado da área de estudo	93
Figura 7.10: a) Espectro de potência médio para os dados aeromagnéticos micronivelados da área de estudo. ()	94
Figura 7.11: Mapa do campo magnético anômalo micronivelado da área de estudo com filtro butterworth de 0,0 a 0,03 rad/km	96
Figura 7.12: Mapa do campo magnético anômalo micronivelado da área de estudo com filtro butterworth de 0,03 a 0,06 rad/km	97
Figura 7.13: Mapa do campo magnético anômalo micronivelado da área de estudo com filtro butterworth de 0,06 a 0,25 rad/km	98
Figura 7.14: Mapa de redução ao polo do campo magnético anômalo ()	100
Figura 7.15: Mapa de susceptibilidade aparente do campo magnético anômalo a uma profundidade de 1,7 km	101
Figura 7.16: Mapa pseudo-gravimétrico do campo magnético anômalo ()	102
Figura 7.17: Anomalias Bouguer (). Contornos da Figura 7.16.	103
Figura 7.18: Mapa da derivada horizontal em X do campo magnético anômalo ()	104
Figura 7.19: Mapa da derivada horizontal em Y do campo magnético anômalo ()	105
Figura 7.20: Mapa derivada vertical do campo magnético anômalo ()	106
Figura 7.21: Mapa do gradiente horizontal total do campo magnético anômalo obtido a partir de diferenças finitas	107
Figura 7.22: Mapa da amplitude do sinal analítico do campo magnético anômalo ()	108
Figura 7.23: Mapa da amplitude do sinal analítico de segundo tipo do campo magnético anômalo ()	110
Figura 7.24: Mapa de profundidades de fontes magnéticas a partir da amplitude do sinal analítico sobre topografia	111
Figura 7.25: Mapa da fase do sinal analítico do campo magnético anômalo	112
Figura 7.26: Mapa de terraceamento usando a amplitude do sinal analítico de segundo tipo	113
Figura 7.27: Exemplo de janela de dados deslocando-se sobre uma malha regular ()	115
Figura 7.28: Relação tamanho da janela de dados versus profundidade Curie. ()	115
Figura 7.29: Espectros mais representativos de diversos pontos do PGBC. ()	116
Figura 7.30: Representação pictórica da expansão das bordas da janela da malha sob a forma de mapa de contorno. ()	117
Figura 7.31: Mapa da superfície Curie interpretada.	118
Figura 7.32: Relação gradiente geotérmico versus profundidade Curie	119
Figura 7.33: a) Mapa de gradiente geotérmico estimado a partir de superfície Curie	120
b) Mapa de fluxo geotérmico estimado a partir de superfície Curie	121
Figura 7.34: Mapa da fase do sinal analítico com filtro de amplitude	126
Figura 7.35: Mapa de lineamentos interpretados da fase do sinal analítico	127

Figura 7.36: Mapa de amplitude do sinal analítico de segundo tipo com a alteração do esquema de cores	128
Figura 7.37: Mapa interpretado da amplitude do sinal analítico de segundo tipo com a alteração do esquema de cores	129
Figura 7.38 : Arranjo magnético – estrutural interpretado usando a fase do sinal analítico e a amplitude do sinal analítico de segundo tipo	130
Figura 7.39 : a) Domínios magnéticos sobre o mapa do campo magnético anômalo com filtro butterworth de 0,0 a 0,03 rad/km	131
b) Domínios magnéticos sobre o mapa Bouguer	131/2
c) Domínios magnéticos sobre o mapa da superfície Curie interpretada	132
Figura 7.40 : Forma;cão de um duplex extensional () e formação de um duplex contracional () em zona de cisalhamento. ()	133
Figura 7.41: Arranjo magneto – estrutural interpretado, ()	134
Figura 7.42: Fraturas geradas em experimentos tipo Riedel e sua terminologia ()	135
Figura 7.43 : Mapa interpretativo dos dados aeromagnéticos baseado na intensidade do campo anômalo, redução ao polo, gradiente horizontal, amplitude do sinal analítico de segunda ordem e amplitude do sinal analítico de segunda ordem terraceado	137
Figura 7.44: Mapa interpretativo dos dados aeromagnéticos baseado na intensidade do campo anômalo, redução ao polo, gradiente horizontal, amplitude do sinal analítico de segunda ordem e amplitude do sinal analítico de segunda ordem terraceado e a fase do sinal analítico à luz do conhecimento geológico	138
Figura 7.45: a) Mapa gamaespectrométrico de contagem total e o relevo topográfico em curvas de nível	142
b) Mapa gamaespectrométrico de potássio e o relevo topográfico em curvas de nível	143
c) Mapa gamaespectrométrico de tório e o relevo topográfico em curvas de nível	144
d) Mapa gamaespectrométrico de urânio e o relevo topográfico em curvas de nível	145
Figura 7.46: Mapa gamaespectrométrico de contagem total dividido em domínios	146
Figura 7.47: Imagem ternária CMY invertida de K, Th e U. ()	147
Figura 7.48: Imagem ternária CMY invertida de K, Th e U. Amplitude do sinal analítico de 2 [°] ordem terraceada em níveis de cinza	148
Figura 7.49 : Mapa interpretativo de dados aerogamaespectrométricos baseado em imagens ternárias de K, th e U. ()	149
Figura 7.50: Áreas com possibilidade de enriquecimento hidrotermal de potassío (lilás)	151
Figura 7.51: Áreas com possibilidade de enriquecimento de urânio (lilás)	152
Figura 7.52 : Mapa de integração magnética e gamaespectrométrica baseada nas figuras 7.44 e 7.49. ()	155
Figura 8.1: Localização dos perfis de modelagem e inversão sobre a Figura 6.11	159
Figura 8.2: a) Perfil 1 ()	160
b) Perfil 2 ()	161
c) Perfil 3 ()	162
d) Perfil 4 ()	163
e) Perfil 5 ()	164
f) Perfil 6 ()	165
Figura 8.3: Inversão 3-D automática sobre a Figura 6.11, ()	167
Figura 9.1: Arranjo de imagens das regiões de Crixás e Itapaci ()	171
Figura 9.2: Mapa interpretativo integrado para as regiões de Crixás, Guarinos e Pilar de Goiás	172

Figura A1.1: Principais elementos estruturais da porção central da Província Tocantins. ()	193
LISTA DE TABELAS	Pág.
Tabela 4.1: Avaliação de parâmetros geológicos ()	16
Tabela 4.2: Espessura da crosta magnética inferida a partir de anomalias magnéticas	37
Tabela 5.1: Precisão e densidade da malha de observações gravimétricas ()	49
Tabela 5.2: Raios de anéis para correção de terreno ()	53
Tabela 6.1: Exemplo de raios dos anéis e divisão em compartimentos para correção de terreno ()	64
Tabela 6.2: Valores de densidades estimadas	71
Tabela 7.1: Resumo estatístico das malhas regulares geradas a partir de dados aeromagnéticos pelos diversos métodos testados	81
Tabela 7.2: dados geotérmicos e profundidade Curie	119
Tabela 7.3: Descontinuidades magnéticas associadas a zonas de cisalhamento transcorrentes investigadas em campo	133
Tabela 7.4: Domínios gamaespectrométricos e sua associação geológica de acordo com a Figura 2.2 e o Capítulo 2 desta tese	141
Tabela 8.1: Susceptibilidades para alguns tipos de rocha. ()	158
Tabela 10.1: Sumário das principais conclusões	177

LISTA DE EQUAÇÕES

Equação	Pág.	Equação	Pág.	Equação	Pág.	
(4.1)	23	(4.20)	33	(5.1)	48	
(4.2)	23	(4.21)	33	(5.2)	50	
(4.3)	23	(4.22)	33	(5.3)	50	
(4.4)	24	(4.23a e b)	34	(5.4)	51	
(4.5)	24	(4.24)	35	(5.5)	51	
(4.6)	24	(4.25)	35	(5.6)	52	
(4.7)	24	(4.26)	35	(5.7)	52	
(4.8)	24	(4.27)	38	(5.8)	53	
(4.9)	24	(4.28)	38	(5.9)	53	
(4.10)	24	(4.29)	38	(5.10)	54	
(4.11)	24	(4.30)	39	(5.11)	55	
(4.12)	25	(4.31)	40	(5.12)	55	
(4.13)	25	(4.32)	40	(6.1)	64	
(4.14)	29	(4.33)	41	(6.2)	64	
(4.15)	31	(4.34)	42	(6.3)	65	
(4.16)	32	(4.35)	42	(7.1)	77	
(4.17)	32	(4.36)	45	(7.2)	78	
(4.18)	33	(4.37)	47	(7.3)	117	
(4.19)	33	(4.38)	47	(7.4)	117	

Abstract

In an attempt to shed some light on the regional geology, data of airborne geophysics of the Brazil - Canada Geophysical Project (PGBC) were used. Those data were evaluated, processed and interpreted in the light of the geological knowledge of the studied area which is located in the central and northwestern region of Goiás and in the southwestern region of Tocantins, Brazil, involving lands of the Tocantins Structural Province.

In the evaluation of the data of PGBC, a method was proposed for the determination of spikes in the original recording of the magnetic data that revealed to be an efficient technique. Following this, the data were interpolated in regular grid using the method of bi-cubic splines. The data were microleveled using a developed algorithm, which showed efficiency in treating bad-leveled data among flight lines.

Large part of the filters applied on the aeromagnetic data were in the wave number domain. The reduction to the pole filter was used to obtain the pseudo-gravity map, allowing the comparison to the Bouguer map of the area.

The application of enhancement techniques of magnetic sources (horizontal gradient, amplitude of the analytic signals of first and second orders, phase of the analytic signal and terracing), proved to be efficient in the determination of physical discontinuities, translated in geological units. The amplitude of the analytic signal of second order showed better results than the amplitude of the analytic signal of first order in revealing the limits of the causative magnetic bodies and in discriminating mafic and ultramafic rocks.

The application of terracing on the amplitude of the analytic signal of second order allowed placing the anomalous answer on the plan of the outcrops in map, defining the magnetic units better in relation to the well-known geology.

The phase of the analytic signal exhibited an entangle of linear structures (lineaments and limits of magnetic property) showing the complexity of the structural framework and in its interpretation and correlation to the geology.

For estimation of the Curie surface depths in the studied area, specific programs were developed, with routines that turned it more efficient and to recover the data on the borders. A routine was included for subtraction of a first-degree trend surface. The focused estimates, together with some punctual geothermal data, allowed the extrapolation and interpolation for the whole studied area. This shows the importance of the Curie depth estimates.

The analysis of the magnetic images for the anomalous field and its transformed ones made it possible to define four main types of magnetic relief: smooth, rough and uncorrelated, rough and correlated, and very rough.

The analysis of the main magnetic structures interpreted in the images of the phase of the analytic signal, of the amplitude of the analytic signal of second order and of the anomalous magnetic field, together with the geological information available, suggest that these structures must be tied up to an event with main tension, σ_1 , in the direction approximately E-W.

The use of color composition of the type CMY inverted in the gamma-ray spectrometric ternary maps showed good results. The best combination is K in the cyan (C), Th in the magenta (M) and U in the yellow (Y). This allowed the identification of the limits and subdivisions of the orthogneissic complexes of Caiçara, Anta and Uvá.

A detailed gravity survey (some 400 stations over 100,000 km²) was accomplished in the area of Crixás to study the local greenstone belts. The gravity grid showed better each of the three greenstone belts than available gravity data. Algorithms for terrain correction together with another for indirect determination of densities were developed.

A 2-D modeling (starting models) and 2,5-D and 3-D inversions were made on the greenstone belts using the gravity data and models based on the local geology. These inversions allowed the construction of vertical sections with the probable geology for them. The depths to the base obtained in two inversion methods are compatible and gave indication of about 2 km.

The integrated analysis of the ternary images of K, Th and U, together with the transformed magnetic maps, the Bouguer map, the map of anomalous potassium and the magnetic and gamma-ray spectrometric integration map, using the geological knowledge for the area, suggests that the area has been affected by a sequence of events, beginning with the formation of the granitoid-greenstone belt terrain, the Brasiliano collisional Cycle and finishing with more recent events.

Using the gamma-ray spectrometric data it was possible to estimate what is called anomalous potassium, which revealed lineaments that coincide with some occurrences of primary gold. These same occurrences were added to the interpretative maps. They are associated to magnetic structures, including lineaments picked up in the phase of the analytic signal, and along some contacts between different lithologic units. This fact, allied to the lineaments found in the anomalous potassium, can indicate shear zones, mainly in the directions N55W and N65W, in which there would be possibility of the occurrence of hidrotermal minerals.

Maps of magnetic interpretation, gamma-ray spectrometric interpretation and of integration of the study area represent regional sketches of geological units and structural elements. The validity of these interpretations should be verified in field.

Resumo

Com o fito de melhorar o conhecimento da geologia regional, foram utilizados os dados de geofísica aérea do Projeto Geofísico Brasil – Canadá (PGBC). Esses dados foram avaliados, tratados e interpretados à luz do conhecimento geológico da área estudada localizada no Estado de Goiás e no sudoeste do Estado do Tocantins, abrangendo terrenos da Província Estrutural Tocantins.

Na avaliação dos dados do PGBC foi proposta uma metodologia para a determinação de "picos" (*spikes*) na gravação original dos dados magnéticos, que revelou ser uma técnica eficiente. A partir daí, os dados foram interpolados em malha regular utilizando o método de *splines* bi-cúbicos. Os dados foram micronivelados utilizando um algoritmo desenvolvido, que mostrou eficiência na retirada dos desnivelamentos entre linhas de vôo.

Grande parte das filtragens aplicadas sobre os dados aeromagnéticos foi feita no domínio do número de onda. O filtro de redução ao polo somente foi eficiente para aquelas anomalias que provavelmente não possuíam magnetização remanescente. Mesmo assim, o resultado da aplicação do filtro de pseudo-gravidade, baseado nessa redução ao polo, pôde ser comparado ao mapa Bouguer da região.

A aplicação de técnicas de realce de fonte magnética (gradiente horizontal total, amplitudes e fases dos sinais analíticos de primeira e segunda ordens e terraceamento), mostrou eficiência na determinação de descontinuidades físicas que podem ser traduzidas em unidades geológicas. A amplitude do sinal analítico de segunda ordem mostrou melhores resultados do que de primeira ordem por revelar melhor os limites dos corpos causativos e discriminar as unidades de rochas máficas e ultramáficas.

A aplicação de terraceamento sobre a amplitude do sinal analítico de segunda ordem permitiu situar a resposta anômala sobre o traçado dos afloramentos em mapa, definindo melhor as unidades magnéticas em relação à geologia conhecida.

A fase do sinal analítico exibiu toda a complexidade das estruturas locais traduzidas em um emaranhado de estruturas lineares (lineamentos e limites de propriedade magnética) que auxiliaram na interpretação e correlação às conhecidas da geologia.

Na estimativa da profundidade da superfície Curie da área de estudo foram desenvolvidos programas específicos, acrescidos de rotinas que o tornaram mais eficiente e que possibilitou cobrir uma área equivalente à do trabalho sem comprometer o resultado. Nessas rotinas incluiu-se a retirada automática de superfície de tendência de grau 1 e a expansão das bordas por dobramento das janelas de dados no domínio de Fourier, garantindo maior estabilidade nas estimativas espectrais. As estimativas em foco, juntamente com alguns dados geotérmicos pontuais, permitiram que se extrapolasse e interpolasse esses últimos para toda a área de estudo. Isto mostra a importância das estimativas das profundidades Curie.

Da análise das imagens magnéticas do campo anômalo e de suas transformadas, foi possível definir quatro tipos principais de relevo magnético: relevo magnético suave, relevo magnético acidentado e incorrelato, relevo magnético acidentado e correlato e relevo magnético muito acidentado.

A análise das principais estruturas magnéticas interpretadas a partir, principalmente, das imagens da fase do sinal analítico, da amplitude do sinal analítico de segunda ordem e do campo magnético anômalo, aliado ao conhecimento geológico da região, sugere que essas estruturas estejam ligadas a um evento com tensão principal, σ_1 , na direção ~E-W.

O uso de composição do tipo CMY invertido nos mapas gamaespectrométricos ternários surtiu bom resultado. A melhor combinação foi a que usou o canal do K associado à cor ciano (C), o Th a magenta (M) e o U a amarelo (Y), que permitiu a identificação dos limites e subdivisões dos complexos ortognáissicos de Caiçara, da Anta e Uvá.

Para estudo dos *greenstone belts* locais, foi realizado nas região de Crixás um levantamento gravimétrico em semi-detalhe (cerca de 400 estações sobre 100.000 km²). A malha gravimétrica revelou os três *greenstone belts* com maior nitidez que a obtida dos dados regionalizados disponíveis. Metodologias de determinação indireta de densidades e de correção de terreno foram desenvolvidas e aplicadas na área estudada.

Modelagem 2-D (modelos de partida) e inversões 2,5-D e 3-D sobre os *greenstone belts* com dados gravimétricos e modelos baseados na geologia local, permitiram a elaboração de seções verticais com a geologia provável destas. As profundidades obtidas em dois métodos de inversão diferentes indicam que a base das anomalias pode chegar a 2 km de profundidade.

A análise integrada das imagens ternárias de K, Th e U, em conjunto com os mapas magnéticos transformados, os mapas Bouguer, o mapa de potássio anômalo e o mapa de integração magnético - gamaespectrométrica, à luz do conhecimento geológico da região, sugere que a região tenha sido afetada por uma seqüência de eventos, iniciando-se pela formação dos terrenos granitóide-*greenstone* e passando pela colisão brasiliana, indo até eventos mais recentes.

Usando os dados gamaespectrométricos, foi possível estimar o chamado potássio anômalo, que revelou alinhamentos coincidentes com algumas ocorrências de ouro primário. Essas mesmas ocorrências foram adicionadas aos mapas interpretativos. Observou-se que parte delas se associa a estruturas magnéticas, incluindo lineamentos na fase do sinal analítico, e a alguns contatos entre as unidades. Esse fato, aliado aos alinhamentos encontrados no potássio anômalo, podem indicar zonas de cisalhamento, principalmente na direção N55-65W, na qual haveria possibilidade da ocorrência de minerais hidrotermais.

Mapas de interpretação magnética, gamaespectrométrica e integrada da área de estudo e da área do levantamento gravimétrico representam esboços regionais de unidades geológicas e elementos estruturais. A validade dessas interpretações deverá ser verificada em campo.

Abreviações

LISTA DE ABREVIAÇÕES

ARM - Arco Magmático de Goiás BIP - Bacia Intracratônica Parnaíba CBA - Complexo Barro Alto CCB - Complexo Cana Brava CN - Complexo Niquelândia CPRM - Companhia de Pesquisa de Recursos Minerais DG - Domínio gamaespectrométrico DME - Domínio magnético - estrutural DNPM - Departamento Nacional de Produção Mineral FA - Faixa Araguaia FB - Faixa Brasília GSM - Grupo Serra da Mesa IAG/USP - Instituto Astronômico e Geofísico da Universidade de São Paulo IG/UnB - Instituto de Geociências da Universidade de Brasília IN - Inflexão de Niquelândia LT - Lineamento Transbrasiliano MGO - Maciço de Goiás MME - Ministério de Minas e Energia PET - Província Estrutural Tocantins PGBC - Projeto Geofísico Brasil - Canadá RGFB - Rede Gravimétrica Fundamental Brasileira SIS/IG/UnB - Observatório Sismológico da Universidade de Brasília

Aqui expresso os mais sinceros agradecimentos às pessoas e entidades que contribuíram para esta tese de doutoramento:

- Aos orientadores Prof. Dr. Roberto Alexandre Vitória de Moraes e Prof. Dr. Augusto Cesar Bittencourt Pires, pelo grande incentivo, apoio e orientação.

- À CAPES, pelo apoio financeiro.

- À Petróleo Brasileiro S.A. (PETROBRÁS), à Companhia de Pesquisa de Recursos Minerais (CPRM), ao Departamento Nacional da Produção Mineral (DNPM), e à Agência para o Desenvolvimento da Industria Mineral Brasileira (ADIMB) e à Metais Goiás S.A. (METAGO) pela colaboração com a cessão de dados aerogeofísicos digitais do PGBC entre outros.

- À Metais Goiás S.A. (METAGO) pela colaboração com banco de dados.

- À WMC Mineração LTDA., principalmente a Grant Allan Osborne, pelos dados de furos de sondagens.

- Ao Instituto de Geociências da Universidade de Brasília (IG/UnB), pelo apoio logístico.

- Ao Observatório Sismológico da UnB, pelo empréstimo do gravímetro.

- Ao Prof. Dr. Reinhardt Adolfo Fuck, pelas sugestões e, quando diretor do IG/UnB, pela carta solicitando os dados digitais.

- Ao Prof. Dr. Carlos Alberto Mendonça do IAG/USP, pelas valiosas sugestões.

- Ao Dr. Luiz Fernando Santana Braga da Geomag/CGG, pelo grande apoio e sugestões.

- Ao Prof. Dr. Hardy Jost, pelas grandes idéias.

- Ao Prof. Dr. José Oswaldo Araújo Filho, pelas ótimas idéias.

- Ao Prof. Dr. José Wilson Corrêa Rosa, pelas sugestões.

- Ao Prof. Dr. Claudinei Golveia de Oliveira, pelo material bibliográfico.

- Aos Profs. Drs. Yara Marangoni e Eder Cassola Molina do IAG/USP, pela cessão de dados gravimétricos e topográficos digitais.

- Ao Prof. Dr. Valiya Mannathal Hamza do Observatório Nacional (ON), pela cessão dos dados de fluxo geotérmico.

- Aos técnicos Juraci Mário de Carvalho e Isaú Paiva Gomes do Observatório Sismológico da UnB, pela manutenção do gravímetro e apoio técnico.

- A todos os amigos de mestrado e doutorado, em especial a Adalene Moreira Silva, Marcelo Gonçalves Resende e Carlos Nogueira da Costa Junior, pelas discussões e sugestões.

- A todos os bolsistas e alunos de graduação que ajudaram no levantamento gravimétrico.

- Aos meus pais, Luiz Jacob Blum e Marlene Bassay Blum, pelo amor e apoio que me deram durante todos os momentos de minha vida.

- Aos meus irmãos, Luiz Eduardo Bassay Blum e Christian Marcius Bassay Blum, pela grande amizade e carinho.

- Aos meus sogros – pais, Deri Martins Bispo e Terezinha Martins e Martins e ao cunhado – irmão Anderson Martins, pelas pessoas maravilhosas que são.

- A minha amada esposa Leila Mara Martins, pela pessoa maravilhosa, amorosa, compreensiva, etc. que é, pela alegria que foi conhece-la e por ter dado à luz ao nosso amado filho.

- A meu querido filho Eduardo Henrique Martins Bassay Blum, pela grande alegria de vê-lo nascer e crescer.

- A Deus e NSJC, por tudo.

"Qualquer criança me desperta dois sentimentos: ternura pelo que ela é e respeito pelo que poderá vir a ser"

LOUIS PASTEUR (1822-1895), químico francês

> Ao meu filho Eduardo Henrique e à minha esposa Leila